Skip to main content

Increased RCS for Enhanced Detection by Radars for Road Safety Applications

  • Living reference work entry
  • First Online:
Handbook of Metamaterial-Derived Frequency Selective Surfaces

Part of the book series: Metamaterials Science and Technology ((METSCTE,volume 3))

  • 28 Accesses

Abstract

Metasurfaces are a well-known interesting topic nowadays for many researchers and for various applications. The idea of anomalous reflection is proposed to demonstrate the concept of retrodirectivity. Retrodirectivity can be very important property particularly for radar applications at microwave and millimeter wave frequencies where the enhancement of the radar cross section of poorly scattering targets is needed. Many conventional topologies for such feature are presented in the literature such as corner dihedrals and Van Atta arrays; however, these topologies can be bulky and difficult to fabricate. Indeed metasurfaces can be compact and of remarkable physical properties, the main challenge is to design retrodirective metasurfaces that can operate for multiple incident angles simultaneously. In this chapter, we introduce various techniques to design multi-angle retrodirective metasurfaces from cascading, surface impedance modulation to Fano resonance. The design procedure is given following the generalized law of reflection and measurements have been carried out for several prototype designs to validate the simulation results. From the applicative aspect, this project is in the framework of project CYCLOPE, which is dedicated to protect vulnerable road users such as cyclists and pedestrians.

To demonstrate the potential of retrodirective metasurfaces for such applications, measurements have been carried out using a mannequin alongside the metasurface designs. The metasurface design showed remarkable results by increasing the radar cross section of the mannequin when implemented alongside the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Asadchy V, Albooyeh M, Tcvetkova S, Díaz-Rubio A, Ra’di Y, Tretyakov S (2016) Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B 94(7):075142

    Article  Google Scholar 

  • Asadchy V, Díaz-Rubio A, Tcvetkova S, Kwon DH, Elsakka A, Albooyeh M, Tretyakov S (2017) Flat engineered multichannel reflectors. Phys Rev X 7(3):031046

    Google Scholar 

  • Aziz AA, Ginting L, Setiawan D, Park JH, Tran NM, Yeon GY, Kim DI, Choi KW (2019) Batteryless location tracking for internet of things: simultaneous wireless power transfer and positioning. IEEE Internet Things J 6(5):9147–9164

    Article  Google Scholar 

  • Calà Lesina A, Ramunno L, Berini P (2015) Dual-polarization plasmonic metasurface for nonlinear optics. Opt Lett 40(12):2874–2877

    Article  Google Scholar 

  • Chen HT, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79(7):076401

    Article  Google Scholar 

  • Chen Z, Deng H, Xiong Q, Liu C (2018) Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units. Appl Phys A Mater Sci Process 124(3):281

    Article  Google Scholar 

  • Doumanis E, Goussetis G, Papageorgiou G, Fusco V, Cahill R, Linton D (2013) Design of engineered reflectors for radar cross section modification. IEEE Trans Antennas Propag 61(1):232–239

    Article  MathSciNet  Google Scholar 

  • Elsakka AA, Asadchy VS, Faniayeu IA, Tcvetkova SN, Tretyakov SA (2016) Multifunctional cascaded metamaterials: integrated transmitarrays. IEEE Trans Antennas Propag 64(10):4266–4276

    Article  MathSciNet  Google Scholar 

  • Epstein A, Eleftheriades GV (2014) Floquet-bloch analysis of refracting huygens metasurfaces. Phys Rev B 90(23):235127

    Article  Google Scholar 

  • Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR (2016) Metasurfaces: from microwaves to visible. Phys Rep 634:1–72

    Article  MathSciNet  Google Scholar 

  • Guo YC, Shi XW, Chen L (2008) Retrodirective array technology. Prog Electromagn Res B 5:153–167

    Article  Google Scholar 

  • Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 54(2):10–35. https://doi.org/10.1109/MAP.2012.6230714

    Article  Google Scholar 

  • Hou-Tong Chen AJT, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79(076101):40

    Google Scholar 

  • Kalaagi M, Seetharamdoo D (2018) Design of dual polarized retrodirective metasurfaces. In: 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), IEEE, pp 1–2

    Google Scholar 

  • Kalaagi M, Seetharamdoo D (2019) Multiangle retrodirective cascaded metasurface. J Appl Phys 126(10):104901

    Article  Google Scholar 

  • Kalaagi M, Seetharamdoo D (2020) Retrodirective metasurfaces from non-reciprocal to reciprocal using impedance modulation for high-super-cell-periodicity designs. Appl Phys A Mater Sci Process 126(4):1–7

    Article  Google Scholar 

  • Knott EF (2012) Radar cross section measurements. Springer, New York

    Google Scholar 

  • Li Z, Palacios E, Butun S, Aydin K (2015) Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 15(3):1615–1621

    Article  Google Scholar 

  • Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S (2014) Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26(29):5031–5036

    Article  Google Scholar 

  • Loewen EG (1983) Diffraction gratings, ruled and holographic. Appl Optics Opt Eng 9:33–71

    Article  Google Scholar 

  • Pfeiffer C, Grbic A (2013) Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett 102(23):231116

    Article  Google Scholar 

  • Pors A, Bozhevolnyi SI (2013) Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 21(22):27438–27451

    Article  Google Scholar 

  • Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI (2013a) Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 3(2155):1–6

    Google Scholar 

  • Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI (2013b) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13(2):829–834

    Article  Google Scholar 

  • Shen C, Díaz-Rubio A, Li J, Cummer SA (2018) A surface impedance-based three-channel acoustic metasurface retroreflector. Appl Phys Lett 112(18):183503

    Article  Google Scholar 

  • Srour H, Gillard R, Méric S, Seetharamdoo D (2018) Analysis of the retrodirective mechanism of a flattened dihedral. IET Microw Antennas Propag 12(5):699–705

    Article  Google Scholar 

  • Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao S, Kung WT, Guo GY, Zhou L, Tsai DP (2012) High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12(12):6223–6229. https://doi.org/10.1021/nl3032668. pMID: 23189928

    Article  Google Scholar 

  • Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667

    Article  Google Scholar 

  • Yan C, Yang KY, Martin OJ (2017) Fano-resonance-assisted metasurface for color routing. Light Sci Appl 6(7):e17017

    Article  Google Scholar 

  • Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333–337

    Article  Google Scholar 

  • Yurduseven O, Smith DR (2017) Dual-polarization printed holographic multibeam metasurface antenna. IEEE Antennas Wirel Propag Lett 16:2738–2741

    Article  Google Scholar 

  • Zhang L, Mei S, Huang K, Qiu CW (2016) Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater 4(6):818–833. https://doi.org/10.1002/adom.201500690

    Article  Google Scholar 

  • Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S (2015) Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10(4):308–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divitha Seetharamdoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalaagi, M., Seetharamdoo, D. (2022). Increased RCS for Enhanced Detection by Radars for Road Safety Applications. In: Narayan, S., Kesavan, A. (eds) Handbook of Metamaterial-Derived Frequency Selective Surfaces. Metamaterials Science and Technology, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-15-8597-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8597-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8597-5

  • Online ISBN: 978-981-15-8597-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics