Interface and Interphase in Carbon Nanotube-Based Polymer Composites

A Review
Living reference work entry


The average mechanical properties of carbon fiber-reinforced polymer composites (CFRP) primarily depend on the properties of the constituents and the interaction between them. The strength of interaction is related to the extent of interface surrounding the fiber. Enhancing the interfacial area is one of the strategies to improve the interfacial strength and hence average mechanical properties of CFRP. To this end, a review is presented on the conventional and advanced approaches followed to improve the interfacial interaction. The advanced methods include the incorporation of nanofiller such as carbon nanotubes in the composite which act as secondary reinforcement in addition to the primary fiber reinforcement. This is followed by a discussion on the importance of interphase region (a region having distinct properties from fiber and matrix) and the ways to process and characterize the same.


Carbon fiber Carbon nanotube CFRP Interface Interphase Multiscale and hybrid composite 


  1. B.D. Agarwal, L.J. Broutman, K. Chandrashekhara, Analysis and Performance of Fiber Composites (Wiley, New Jersey, 2006)Google Scholar
  2. P. Agnihotri, S. Basu, K. Kar, Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon 49(9), 3098–3106 (2011)Google Scholar
  3. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Single-walled carbon nanotube–polymer composites: Strength and weakness. Adv. Mater. 12(10), 750–753 (2000)Google Scholar
  4. A. Alian, S. Kundalwal, S. Meguid, Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)Google Scholar
  5. F. An, C. Lu, Y. Li, J. Guo, X. Lu, H. Lu, S. He, Y. Yang, Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197–202 (2012)Google Scholar
  6. U. Army Army researchers chase helicopter performance gains (2013)Google Scholar
  7. F.S. Awan, M.A. Fakhar, L.A. Khan, U. Zaheer, A.F. Khan, T. Subhani, Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites. Compos. Interfaces 25(8), 681–699 (2018)Google Scholar
  8. S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review. Int. Mater. Rev. 55(1), 41–64 (2010)Google Scholar
  9. A. Battisti, D. Esqué-de los Ojos, R. Ghisleni, A.J. Brunner, Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos. Sci. Technol. 95, 121–127 (2014)Google Scholar
  10. H.S. Bedi, M. Tiwari, P.K. Agnihotri, Quantitative determination of size and properties of interphase in carbon nanotube-based multiscale composites. Carbon 132, 181–190 (2018a) Scholar
  11. H.S. Bedi, S.S. Padhee, P.K. Agnihotri, Effect of carbon nanotube grafting on the wettability and average mechanical properties of carbon fiber/polymer multiscale composites. Polym. Compos. 39(S2), E1184–E1195 (2018b)Google Scholar
  12. H.S. Bedi, B.K. Billing, P.K. Agnihotri, Interphase engineering in carbon fiber/epoxy composites: Rate sensitivity of interfacial shear strength and interfacial fracture toughness. Polym. Compos (2020)Google Scholar
  13. L.W. Byrd, V. Birman, Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test. Compos. Part B 37(4–5), 365–378 (2006)Google Scholar
  14. K.K. Chawla, Composite Materials: Science and Engineering (Springer Science & Business Media, New York, 2012)Google Scholar
  15. J. Chen, L. Yan, W. Song, D. Xu, Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A 114, 149–169 (2018)Google Scholar
  16. J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun'ko, W.J. Blau, High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)Google Scholar
  17. N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet, I. Verpoest, J.W. Seo, Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam. Relat. Mater. 51, 39–48 (2015)Google Scholar
  18. K.A. Dransfield, L.K. Jain, Y.-W. Mai, On the effects of stitching in CFRPs – I. mode I delamination toughness. Compos. Sci. Technol. 58(6), 815–827 (1998)Google Scholar
  19. B. Fiedler, F.H. Gojny, M.H. Wichmann, M.C. Nolte, K. Schulte, Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)Google Scholar
  20. S. Gao, R.C. Zhuang, J. Zhang, J.W. Liu, E. Mäder, Glass fibers with carbon nanotube networks as multifunctional sensors. Adv. Funct. Mater. 20(12), 1885–1893 (2010)Google Scholar
  21. R.F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92(12), 2793–2810 (2010)Google Scholar
  22. O. Gohardani, M.C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014)Google Scholar
  23. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Compos Sci Technol 65(15–16), 2300–2313 (2005a) Scholar
  24. F.H. Gojny, M.H. Wichmann, B. Fiedler, W. Bauhofer, K. Schulte, Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A 36(11), 1525–1535 (2005b)Google Scholar
  25. F.H. Gojny, M.H. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6), 2036–2045 (2006)Google Scholar
  26. R.M. Jones, Mechanics of Composite Materials (Inc, 1999)Google Scholar
  27. T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase–part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos. Part A 43(9), 1569–1577 (2012)Google Scholar
  28. J. Karger-Kocsis, H. Mahmood, A. Pegoretti, All-carbon multi-scale and hierarchical fibers and related structural composites: A review. Compos. Sci. Technol. 186, 107932 (2020)Google Scholar
  29. M.R. Kessler, Polymer matrix composites: A perspective for a special issue of polymer reviews. Polym. Rev. 52(3), 229–233 (2012)Google Scholar
  30. G. Kim, Y. Kim, J. Ihm, Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chem. Phys. Lett. 415(4–6), 279–282 (2005)Google Scholar
  31. Ž. Kotanjac, L. Lefferts, V. Koissin, L. Warnet, R. Akkerman, Synthesis of carbon nanofibers on large woven cloth. C—J. Carbon Res. 1(1), 2–15 (2015)Google Scholar
  32. M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)Google Scholar
  33. P. Larsson, J.A. Larsson, R. Ahuja, F. Ding, B.I. Yakobson, H. Duan, A. Rosén, K. Bolton, Calculating carbon nanotube–catalyst adhesion strengths. Phys. Rev. B 75(11), 115419 (2007)Google Scholar
  34. C. Li, T.-W. Chou, Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66(14), 2409–2414 (2006)Google Scholar
  35. M. Li, Y.-Z. Gu, H. Liu, Y.-X. Li, S.-K. Wang, Q. Wu, Z.-G. Zhang, Investigation the interphase formation process of carbon fiber/epoxy composites using a multiscale simulation method. Compos. Sci. Technol. 86, 117–121 (2013)Google Scholar
  36. Q. Li, J.S. Church, M. Naebe, B.L. Fox, Interfacial characterization and reinforcing mechanism of novel carbon nanotube–carbon fibre hybrid composites. Carbon 109, 74–86 (2016a)Google Scholar
  37. Q. Li, J.S. Church, M. Naebe, B.L. Fox, A systematic investigation into a novel method for preparing carbon fibre–carbon nanotube hybrid structures. Compos. Part A 90, 174–185 (2016b)Google Scholar
  38. S.V. Lomov, L. Gorbatikh, Ž. Kotanjac, V. Koissin, M. Houlle, O. Rochez, M. Karahan, L. Mezzo, I. Verpoest, Compressibility of carbon woven fabrics with carbon nanotubes/nanofibres grown on the fibres. Compos. Sci. Technol. 71(3), 315–325 (2011)Google Scholar
  39. V. Lordi, N. Yao, Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)Google Scholar
  40. G. Lubineau, A. Rahaman, A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 50(7), 2377–2395 (2012)Google Scholar
  41. K. Mai, E. Mäder, M. Mühle, Interphase characterization in composites with new non-destructive methods. Compos. Part A 29(9), 1111–1119 (1998)Google Scholar
  42. C. Medina, J.M. Molina-Aldareguía, C. González, M.F. Melendrez, P. Flores, J. LLorca Comparison of push-in and push-out tests for measuring interfacial shear strength in nano-reinforced composite materials. J. Compos. Mater.:0021998315595115 (2015)Google Scholar
  43. G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)Google Scholar
  44. M. Monthioux, B. Smith, B. Burteaux, A. Claye, J. Fischer, D. Luzzi, Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 39(8), 1251–1272 (2001)Google Scholar
  45. J. Moosburger-Will, J. Jäger, J. Strauch, M. Bauer, S. Strobl, F.F. Linscheid, S. Horn, Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: Influence of carbon fiber surface chemistry. Compos. Interfaces 24(7), 691–710 (2017)Google Scholar
  46. A. Mouritz, K. Leong, I. Herszberg, A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Compos. Part A 28(12), 979–991 (1997)Google Scholar
  47. K. Mylvaganam, L. Zhang, Nanotube functionalization and polymer grafting: An ab initio study. J. Phys. Chem. B 108(39), 15009–15012 (2004)Google Scholar
  48. R. Patel, B. Bhattacharya, S. Basu, Effect of interphase properties on the damping response of polymer nano-composites. Mech. Res. Commun. 35(1), 115–125 (2008)Google Scholar
  49. R.B. Pipes, N. Pagano, Interlaminar stresses in composite laminates under uniform axial extension, in Mechanics of composite materials, (Springer, 1994), pp. 234–245Google Scholar
  50. T.R. Pozegic, K. Jayawardena, J.-S. Chen, J.V. Anguita, P. Ballocchi, V. Stolojan, S.R.P. Silva, I. Hamerton, Development of sizing-free multi-functional carbon fibre nanocomposites. Compos. Part A 90, 306–319 (2016)Google Scholar
  51. H. Qian, A. Bismarck, E.S. Greenhalgh, M.S. Shaffer, Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Compos. Part A 41(9), 1107–1114 (2010)Google Scholar
  52. M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 72(1), 72–84 (2011)Google Scholar
  53. J. Rodríguez-González, C. Rubio-González, C. Meneses-Nochebuena, P. González-García, L. Licea-Jiménez, Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes. Compos. Interfaces 24(9), 883–896 (2017)Google Scholar
  54. V.S. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Can carbon nanotubes grown on fibers fundamentally change stress distribution in a composite? Compos. Part A 63, 32–34 (2014)Google Scholar
  55. M. Sharma, S. Gao, E. Mäder, H. Sharma, L.Y. Wei, J. Bijwe, Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 102, 35–50 (2014)Google Scholar
  56. C. Soutis, Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 41(2), 143–151 (2005)Google Scholar
  57. C. Soutis, P. Curtis, N.A. Fleck, Compressive failure of notched carbon fibre composites. Proc. R. Soc. Lond. A Math. Phys. Sci. 440(1909), 241–256 (1993)Google Scholar
  58. X. Sui, J. Shi, H. Yao, Z. Xu, L. Chen, X. Li, M. Ma, L. Kuang, H. Fu, H. Deng, Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos. Part A 92, 134–144 (2017)Google Scholar
  59. L.G. Tang, J.L. Kardos, A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym. Compos. 18(1), 100–113 (1997)Google Scholar
  60. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)Google Scholar
  61. E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)Google Scholar
  62. S. Trimble, Lockheed Martin Reveals F-35 to Feature Nanocomposite Structures (FliIn, 2011)Google Scholar
  63. J.-L. Tsai, C. Sun, Strain rate effect on in-plane shear strength of unidirectional polymeric composites. Compos. Sci. Technol. 65(13), 1941–1947 (2005)Google Scholar
  64. M. VanLandingham, R. Dagastine, R. Eduljee, R. McCullough, J. Gillespie, Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Compos. Part A 30(1), 75–83 (1999)Google Scholar
  65. H.D. Wagner, R.A. Vaia, Nanocomposites: Issues at the interface. Mater. Today 7(11), 38–42 (2004)Google Scholar
  66. H. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72(2), 188–190 (1998)Google Scholar
  67. Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68(7–8), 1644–1648 (2008)Google Scholar
  68. C. Wang, Y. Li, L. Tong, Q. Song, K. Li, J. Li, Q. Peng, X. He, R. Wang, W. Jiao, S. Du, The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites. Carbon 69, 239–246 (2014)Google Scholar
  69. C. Wang, J. Li, S. Sun, X. Li, F. Zhao, B. Jiang, Y. Huang, Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength. Compos. Sci. Technol. 135, 46–53 (2016)Google Scholar
  70. C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. Xie, B. Jiang, E.K. Wujcik, Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263–271 (2017a)Google Scholar
  71. Y. Wang, S.K. Raman Pillai, J. Che, M.B. Chan-Park, High interlaminar shear strength enhancement of carbon fiber/epoxy composite through fiber-and matrix-anchored carbon nanotube networks. ACS Appl. Mater. Interfaces 9(10), 8960–8966 (2017b)Google Scholar
  72. J. Williams, M. Donnellan, M. James, W. Morris, Properties of the interphase in organic matrix composites. Mater. Sci. Eng. A 126(1–2), 305–312 (1990)Google Scholar
  73. K.I. Winey, R.A. Vaia, Polymer nanocomposites. MRS Bull. 32(04), 314–322 (2007)Google Scholar
  74. Q. Xia, Z. Zhang, Y. Liu, J. Leng Buckypaper and its composites for aeronautic applications. Compos. Part B Eng.:108231 (2020)Google Scholar
  75. C. Xiao, Y. Tan, X. Wang, L. Gao, L. Wang, Z. Qi, Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers. Chem. Phys. Lett. 703, 8–16 (2018)Google Scholar
  76. X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R: Rep. 49(4), 89–112 (2005)Google Scholar
  77. L. Yang, X. He, L. Mei, L. Tong, R. Wang, Y. Li, Interfacial shear behavior of 3D composites reinforced with CNT-grafted carbon fibers. Compos. Part A 43(8), 1410–1418 (2012)Google Scholar
  78. B. Yang, X. Tang, K. Yang, F.Z. Xuan, Y. Xiang, L. He, J. Sha, Temperature effect on graphene-filled interface between glass–carbon hybrid fibers and epoxy resin characterized by fiber-bundle pull-out test. J. Appl. Polym. Sci. 135(19), 46263 (2018)Google Scholar
  79. H. Yao, X. Sui, Z. Zhao, Z. Xu, L. Chen, H. Deng, Y. Liu, X. Qian, Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing. Appl. Surf. Sci. 347, 583–590 (2015)Google Scholar
  80. T. Yokozeki, Y. Iwahori, S. Ishiwata, Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. Part A 38(3), 917–924 (2007)Google Scholar
  81. S. Zhang, W. Liu, J. Wang, B. Li, L. Hao, R. Wang, Improvement of interfacial properties of carbon fiber-reinforced poly (phthalazinone ether ketone) composites by introducing carbon nanotube to the interphase. Polym. Compos. 36(1), 26–33 (2015)Google Scholar
  82. L. Zheng, Y. Wang, J. Qin, X. Wang, R. Lu, C. Qu, C. Wang, Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum 152, 84–90 (2018)Google Scholar
  83. Y. Zhou, F. Pervin, L. Lewis, S. Jeelani, Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 157–165 (2008)Google Scholar
  84. J. Zhu, A. Imam, R. Crane, K. Lozano, V.N. Khabashesku, E.V. Barrera, Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos. Sci. Technol. 67(7–8), 1509–1517 (2007)Google Scholar

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations