Skip to main content

Soy Isoflavones

  • Reference work entry
  • First Online:
Handbook of Dietary Phytochemicals
  • 3061 Accesses

Abstract

Soy and its bioactive compounds, isoflavones, have become a hot issue in the last 20 years. Increased breeding of the plant has created a strong market in many countries. Nevertheless, the cross-consumption of foreign products is not safe for certain ethnic groups and requires risk assessment evaluation because of ethnic differences among populations that induce, for certain compounds, different end points in humans. For example, in Asians and white people, the intake of these compounds can have different bioactive effects. Chemically, isoflavones are isoflavonoids, a subgroup of polyphenolic compounds that have affinity for estrogen receptors and can act as endocrine disruptors in white people. Isoflavones from soy can also be found as constituents of astragalus roots, adzuki beans, chaste, green peas, chickpeas, lupins, kudzu, and red clover, among other plants. An extract named okara also contains isoflavones in variable concentrations and is a by-product of the production of soy preparations, such as tofu and soybean beverages. The main isoflavones isolated from soy are the malonyl glycosides of genistein, daidzein, and glycitein; these aglycones appear only in very low levels. All of these compounds undergo enterohepatic metabolism and are detoxicated by cytochrome P450 (CYP) 1A2 and 3A4, which imply an important potential to induce drug–herb interactions with concomitant intake. Recent research on bioactivity/toxicity of isoflavones has provided a perspective for potential health improvement, but sometimes these results are hard to compare in different ethnic groups. Correct evaluation of each extract in animal and clinical trials is the key to understanding the end points in order to assess safety. This chapter discusses, in detail, the future challenges for isoflavone-derived products, especially in the Western market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

λmax:

Maximum wavelength

ANF:

Antinutritional factor

CID:

Compound ID

COMT:

Catechol-O-methyltransferase

CVD:

Cardiovascular disease

CYP:

Cytochrome P450

DAD:

Diode array detection

DBP:

Diastolic blood pressure

EFSA:

European Food Safety Authority

Emax:

Maximum effect

ER:

Estrogen receptor

ESCO:

EFSA Scientific Cooperation

ESPGRAN:

European Society for Paediatric Gastroenterology Hepatology and Nutrition

FLS:

Fatty liver syndrome

FSH:

Follicle-stimulating hormone

GABA:

γ-Aminobutyric acid

GHO:

Global Health Observatory

GnRH:

Gonadotropin-releasing hormone

HDT:

Hormone-dependent tumor

HPLC:

High-performance liquid chromatography

IUPAC:

International Union of Pure and Applied Chemistry

MeSH:

Medical Subject Heading

MF:

Molecular formula

MRS:

Menopause Rating Scale

MW:

Molecular weight

NCCAM:

National Center for Complementary and Alternative Medicine

NCCIH:

National Center for Complementary and Integrative Health

NPGS:

National Plant Germplasm System

OTC:

Over-the-counter

RT:

Retention time

SF:

Soy-based formula

SBP:

Systolic blood pressure

SEER:

Surveillance, Epidemiology, and End Results

sh:

Shoulder

TE:

Theoretical efficacy

TERE:

Theoretical efficacy relative to estradiol

TSH:

Thyroid-stimulating hormone

UNICAMP:

University of Campinas

UNIFESP:

Federal University of São Paulo

USDA:

US Department of Agriculture

WHO:

World Health Organization

References

  • Agostoni C, Axelsson I, Goulet O, Koletzko B, Michaelsen KF, Puntis J, Rieu D, Rigo J, Shamir R, Group ESPGHAN Committee on Nutrition et al (2006) Soy protein infant formulae and follow-on formulae: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 42(4):352–361. https://doi.org/10.1097/01.mpg.0000189358.38427.cd

    Article  CAS  PubMed  Google Scholar 

  • Ahsan M (2017) The Effect of Soy Isoflavones on the Menopause Rating Scale Scoring in Perimenopausal and Postmenopausal Women: A Pilot Study. Journal of clinical and diagnostic research

    Google Scholar 

  • Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KDR (1982) The identification of the weak oestrogen equol [7 hydroxy-3(4′-hydroxyphenyl)chroman] in human urine. Biochem J 201:353–357

    Article  CAS  Google Scholar 

  • Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8(1):89–98

    Article  CAS  Google Scholar 

  • Basu S, Wagner RG, Ronel Sewpaul R, Priscilla R, Davies JJ (2019) Implications of scaling up cardiovascular disease treatment in South Africa: a microsimulation and cost-effectiveness analysis. Lancet Global Health 7(2):e270–e280

    Article  Google Scholar 

  • Bennetau-Pelissero C (2013) Chapter 77: Isoflavonoids and phytoestrogenic activity. In: Ramawat KG, Merillon JM (eds) Natural products. Springer-Verlag, Berlin/Heidelberg, pp 2381–2416

    Chapter  Google Scholar 

  • Bennetts HN, Underwood EJ, Shier FL (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 22:2–12

    Article  CAS  Google Scholar 

  • BfR [German Federal Institute for Risk Assessment] (2007) Isolated isoflavones are not without risk. http://www.bfr.bund.de/cm/349/isolated_isoflavones_are_not_without_risk.pdf. Accessed 28 Jan 2019

  • Bhagwat S, Haytowitz DB (2015) USDA database for the isoflavone content of selected foods. Release 2.1. https://data.nal.usda.gov/system/files/Isoflav_R2-1.pdf. Accessed 8 Jan 2019

  • Bitto A, Polito F, Atteritano M, Altavilla D, Mazzaferro S, Marini H, Adamo EB, D’Anna R, Granese R, Corrado F, Russo S, Minutoli L, Squadrito F (2010) Genistein aglycone does not affect thyroid function: results from a three-year, randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 95(6):3067–3072. https://doi.org/10.1210/jc.2009-2779

    Article  CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68(6):394–424

    Google Scholar 

  • Campos MG, Costa ML (2012) Possible risks in Caucasians by consumption of isoflavones extracts based. In: Eissa AA (ed) Structure and function of food engineering, vol 9. InTechOpen, pp 205–214. ISBN 978-953-51-0695-1b. https://doi.org/10.5772/47837

  • Campos MG, Matos MP (2010) Bioactivity of isoflavones: assessment through a model as a way to obtain a theoretical efficacy related to estradiol (TERE). Int J Mol Sci 11:480–491

    Article  CAS  Google Scholar 

  • Campos MG, Paranhos AH, Matos MP, Câmara MT, Cunha MM, Pinto P, Silvestre AJ, Amado F, Neto PC (2006) Comparative analysis of over the counter tablet preparations of isoflavones extracted from soy available in Portugal. Nat Prod Commun 1(11):973–980

    CAS  Google Scholar 

  • Campos MG, Matos MP, Câmara MT, Cunha MM (2007) The variability of isoflavones in soy seeds and the possibility of obtaining extracts for over the counter tablet preparations that can be standardized. Ind Crop Prod 26:85–92. https://doi.org/10.1016/j.indcrop.2007.01.011

    Article  CAS  Google Scholar 

  • Carmignani LO, Pedro AO, Lúcia Helena Simões da Costa-Paiva, Pinto-Neto AM (2014) The effect of soy dietary supplement and low dose of hormone therapy on main cardiovascular health biomarkers: a randomized controlled trial. Revista Brasileira de Ginecologia e Obstetrícia 36(6):251-258

    Google Scholar 

  • Cassetta A, Stojan J, Krastanovac I, Kristan K, Švegelj MB, Lamba D, Rižner TL (2017) Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: the case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol 171:80–93. https://doi.org/10.1016/j.jsbmb.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  • Casu F, Watson AM, Yost J, Leffler JW, Gaylord TG, Barrows FT, Sandifer PA, Denson MR, Bearden DW (2017) Metabolomics analysis of effects of commercial soy-based protein products in red drum (Sciaenops ocellatus). J Proteome Res 16(7):2481–2494. https://doi.org/10.1021/acs.jproteome.7b00074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekharan S, Aglin A (2013) Pharmacokinetics of dietary isoflavones. J Steroids Hormon Sci S12:1–8. https://doi.org/10.4172/2157-7536.S12-004

    Article  CAS  Google Scholar 

  • Chen M, Rao Y, Zheng Y, Wei S, Li Y, Guo T, Yin P (2014) Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One 9(2):e89288

    Google Scholar 

  • Chen L-R, Ko N-Y, Chen K-H (2019) Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients 11(11):2649

    Google Scholar 

  • Coleta M, Campos MG, Cotrim MD, Lima TCM, Cunha AP (2008) Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav Brain Res 189(1):75–82

    Article  CAS  Google Scholar 

  • Conklin DE (2003) Use of soybean meal in the diets of marine shrimp. Soybean Meal Info Center fact sheet. United Soybean Board. https://www.soymeal.org/wp-content/uploads/2018/04/use_of_soybean_meal_in_the_diets_of_marine_shrimp.pdf. Accessed 6 Feb 2019

  • Cook LS, Goldoft M, Schwartz SM, Weiss NS (1999) Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol 161(1):152–155

    Article  CAS  Google Scholar 

  • Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Brest Cancer Res Treat 125:315–323

    Article  CAS  Google Scholar 

  • EFSA [European Food Safety Authority] (2012) Scientific opinion on the substantiation of health claims related to soy isoflavones and maintenance of bone mineral density (ID 1655) and reduction of vasomotor symptoms associated with menopause (ID 1654, 1704, 2140, 3093, 3154, 3590) (further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J 10(8):2847. p 3. https://doi.org/10.2903/j.efsa.2012.2847

    Article  CAS  Google Scholar 

  • EFSA [European Food Safety Authority] (2015) Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J 13(10):4246. p 4. https://doi.org/10.2903/j.efsa.2015.4246

  • Fernandez-Lopez A, Lamothe V, Delample M, Denayrolles M, Bennetau-Pelissero C (2016) Removing isoflavones from modern soyfood: Why and how?. Food Chemistry 210:286–294

    Google Scholar 

  • Fokialakis N, Lambrinidis G, Mitsiou DJ, Aligiannis N, Mitakou S, Skaltsounis AL, Pratsinis H, Mikros E, Alexis MN (2004) A new class of phytoestrogens: evaluation of the oestrogenic activity of deoxybenzoins. Chem Biol 11:397–406

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  Google Scholar 

  • Hedlund TE, Maroni PD, Ferucci PG, Dayton R, Barnes S, Jones K, Moore R, Ogden LG, Wahala K, Sackett HM, Gray KJ (2005) Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in Caucasian men. J Nutr 135:1400–1406

    Article  CAS  Google Scholar 

  • Hu M, Krausz K, Chen J, Ge X, Li J, Gelboin HL, Gonzalez FJ (2003) Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and the prodrug converting enzyme of methylated isoflavones. Drug Metab Dispos 31(7):924–931

    Article  CAS  Google Scholar 

  • Jackson RL, Greiwe JS, Schwen RJ (2011) Emerging evidence of the health benefits of S-equol, an estrogen receptor β-agonist. Nutr Rev 69:432–448

    Article  Google Scholar 

  • Kijkuokool P, Parhar IS, Malaivijitnond S (2006) Genistein enhances N-nitrosomethylurea-induced rat mammary tumorigenesis. Cancer Lett 242:53–59

    Article  CAS  Google Scholar 

  • Ko KP (2014) Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev 15:7001–7010

    Article  Google Scholar 

  • Król E, Douglas A, Tocher DR, Crampton VO, Speakman JR, Secombes CJ, Martin SA (2016) Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. BMC Genomics 17:156. https://doi.org/10.1186/s12864-016-2473-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GA, Crawford GW, Liu L, Sasaki Y, Chen X (2007) Plants and people from the Early Neolithic to Shang periods in North China. Proc Natl Acad Sci 104(3):1087–1092. https://doi.org/10.1073/pnas.0609763104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GA, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One 6:e26720. https://doi.org/10.1371/journal.pone.0026720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhu Y, He J, Wang M, Zhu M, Shi T, Qiu L, Ye D, Wei Q (2013) Steroid 5-alpha-reductase type 2 (SRD5A2) V89L and A49T polymorphisms and sporadic prostate cancer risk: a meta-analysis. Mol Biol Rep 40(5):3597–3608. https://doi.org/10.1007/s11033-012-2434-x

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lv Y, Xu L, Zheng Q (2015) Quantitative efficacy of soy isoflavones on menopausal hot flashes. Br J Clin Pharmacol 79(4):593–604. https://doi.org/10.1111/bcp.12533

    Article  CAS  PubMed  Google Scholar 

  • Liu XX, Li SH, Chen JZ, Sun K, Wang XJ, Wang XG, Hui RT (2012) Effect of soy isoflavones on blood pressure: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 22:463–470. https://doi.org/10.1016/j.numecd.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-M, Ho SC, Chen Y-M, Xie YJ, Huang Z-G, Ling W-H (2016) Research protocol: effect of natural S-equol on blood pressure and vascular function- a six-month randomized controlled trial among equol non-producers of postmenopausal women with prehypertension or untreated stage 1 hypertension. BMC Complementary and Alternative Medicine 16(1)

    Google Scholar 

  • Lou YR, Murtola T, Tuohimaa P (2005) Regulation of aromatase and 5alpha-reductase by 25-hydroxyvitamin D (3), 1alpha, 25-dihydroxyvitamin D(3), dexamethasone and progesterone in prostate cancer cells. J Steroid Biochem Mol Biol 94(1–3):151–157. https://doi.org/10.1016/j.jsbmb.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Xing K, Li G, Liu D, Guo Y (2018) Dietary genistein alleviates lipid metabolism disorder and inflammatory response in laying hens with fatty liver syndrome. Front Physiol 24(9): 1–15 (Article 1493). https://doi.org/10.3389/fphys.2018.01493

  • Máire AD, Anderson WF, Altekruse S, Penberthy L, Sherman ME (2016) The surveillance, epidemiology and end results (SEER) program and pathology: towards strengthening the critical relationship. Am J Surg Pathol 40(12):e94–e102. https://doi.org/10.1097/PAS.0000000000000749

    Article  Google Scholar 

  • Maskarinec G, Ju D, Morimoto Y, Franke AA, Stanczyk FZ (2017) Soy food intake and biomarkers of breast cancer risk: possible difference in Asian women? Nutr Cancer 69(1):146–153. https://doi.org/10.1080/01635581.2017.1250924

    Article  CAS  PubMed  Google Scholar 

  • Messina M (1995) Isoflavone intakes by Japanese were overestimated. Am J Clin Nutr 62:645

    Article  CAS  Google Scholar 

  • Messina M (2014) Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr 100(1):423S–430S. https://doi.org/10.3945/ajcn.113.071464

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Franco B, Campos MG, Matos M, Cunha M, Adlercreutz H, Penalvo J (2011) Isoflavone profile of selected soy-products commercialized in Europe. 11th European nutrition conference. Ann Nutr Metab 58(S3):134–135

    Google Scholar 

  • Nakamura Y, Ueshima H (2014) Japanese diet: an explanation for Japanese paradox. J Food Nutr Diet 1(1):7. https://doi.org/10.19104/jfnd.2014.101

    Article  Google Scholar 

  • Nakamura Y, Ohsawa I, Goto Y, Tsuji M, Oguchi T, Sato N, Kiuchi Y, Fukumura M, Inagaki M, Gotoh H (2017) Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report. J Med Case Rep 11(1):253. https://doi.org/10.1186/s13256-017-1418-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • NCCIH 2020. https://nccih.nih.gov/health/soy/ataglance.htm#mind Accessed 10 Jan 2020

  • Omoruyi IM, Kabiersch G, Pohjanvirta R (2013) Commercial processed food may have endocrine disrupting potential: soy-based ingredients making the difference. Food Addit Contam Part A 30:1722–1727

    Article  CAS  Google Scholar 

  • Patisaul HB (2017) Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviors. Proc Nutr Soc 76(2):130–144

    Article  CAS  Google Scholar 

  • Perkin AG, Newbury FG (1899) The colouring matters contained in dyer’s broom (Genista tinctoria) and heather (Calluna vulgaris). J Chem Soc 75:830–839

    Article  CAS  Google Scholar 

  • Pierzynowska K, Gaffke L, Hać A, Mantej J, Niedziałek N, Brokowska J, Węgrzyn G (2018) Correction of Huntington’s Disease Phenotype by Genistein-Induced Autophagy in the Cellular Model. NeuroMolecular Medicine 20(1):112–123

    Google Scholar 

  • Ramdath DD, Padhi EM, Sarfaraz S, Renwick S, Duncan AM (2017) Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 9(4):324–348. https://doi.org/10.3390/nu9040324

    Article  CAS  PubMed Central  Google Scholar 

  • Rawla P (2019) Epidemiology of Prostate Cancer. World J Oncol 10(2):63–89. https://doi.org/10.14740/wjon1191

  • Rizzo G, Baroni L (2018) Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 10(1):43

    Google Scholar 

  • Rodríguez-Landa JF, Cueto-Escobedo J, Puga-Olguín A, Rivadeneyra-Domínguez E, Bernal-Morales B, Herrera-Huerta EV, Santos-Torres A (2017) The Phytoestrogen Genistein Produces Similar Effects as 17 -Estradiol on Anxiety-Like Behavior in Rats at 12 Weeks after Ovariectomy . BioMed Research International 2017:1–10

    Google Scholar 

  • Sathyapalan T, Manuchehri AM, Thatcher NJ, Rigby AS, Chapman T, Kilpatrick ES, Atkin SL (2011) The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: a randomized, double-blind, crossover study. J Clin Endocrinol Metab 96:1442–1449

    Article  CAS  Google Scholar 

  • Sathyapalan T, Aye M, Rigby AS, Fraser WD, Thatcher NJ, Kilpatrick ES, Atkin SL (2017) Soy reduces bone turnover markers in women during early menopause: a randomized controlled trial. J Bone Miner Res 32(1):157–164. https://doi.org/10.1002/jbmr.2927

    Article  CAS  PubMed  Google Scholar 

  • Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S–767S

    Article  CAS  Google Scholar 

  • Setchell KD, Cole SJ (2006) Method of defining equol-producer status and its frequency among vegetarians. J Nutr 136:2188–2193

    Article  CAS  Google Scholar 

  • Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M (1984) Nonsteroidal oestrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40:569–578

    Article  CAS  Google Scholar 

  • Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    Article  CAS  Google Scholar 

  • Setchell KD, Zhao X, Jha P, Heubi JE, Brown NM (2009) The pharmacokinetic behavior of the soy isoflavone metabolite S-(−)equol and its diastereoisomer R-(+)equol in healthy adults determined by using stable-isotope-labeled tracers. Am J Clin Nutr 90:1029–1037

    Article  CAS  Google Scholar 

  • Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2007) Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int J Epidemiol 36:600–609

    Article  Google Scholar 

  • Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W (2009) Soy food intake and breast cancer survival. JAMA 302(22):2437–2443

    Article  Google Scholar 

  • Silva LA, Carbonel AAF, Moraes ARB, Simões RS, Sasso GRS, Goes L, Nunes W, Simões MJ, Patriarca MT (2017) Collagen concentration on the facial skin of post-menopausal women after topical treatment with estradiol and genistein: a randomized double-blind controlled trial. Gynecol Endocrinol 33(11):845–848. https://doi.org/10.1080/09513590.2017.1320708

    Article  CAS  PubMed  Google Scholar 

  • Steinberg FM, Murray MJ, Lewis RD, Cramer MA, Amato P, Young RL, Barnes S, Konzelmann KL, Fischer JG, Ellis KJ, Shypailo RJ, Fraley JK, Smith EO, Wong WW (2011) Clinical outcomes of a 2 years soy supplementation in menopausal women. Am J Clin Nutr 93:356–367. https://doi.org/10.3945/ajcn.110.008359

    Article  CAS  PubMed  Google Scholar 

  • Strauss L, Santtia R, Saarinen N, Streng T, Joshia S, Mäkeläa S (1998) Dietary phytoestrogens and their role in hormonally dependent disease. Toxicol Lett 102–103(28):349–354. https://doi.org/10.1016/S0378-4274(98)00332-4

    Article  PubMed  Google Scholar 

  • Taku K, Lin N, Cai D, Hu J, Zhao X, Zhang Y, Wang P, Melby MK, Hooper L, Kurzer MS, Mizuno S, Ishimi Y, Watanabe S (2010) Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of randomized placebo-controlled trials. J Hypertens 28:1971–1982

    Article  CAS  Google Scholar 

  • Testa B, Krämer SD (2008) The Biochemistry of Drug Metabolism - An Introduction. Chemistry & Biodiversity 5(11):2171–2336

    Google Scholar 

  • Testa I, Salvatori C, Di Cara G, Latini A, Frati F, Troiani S, Principi N, Esposito S (2018) Soy-based infant formula: are phyto-oestrogens still in doubt? Front Nutr 5(110):1–8. https://doi.org/10.3389/fnut.2018.00110

    Article  CAS  Google Scholar 

  • Tijhuis M, Doets E, van der Velpen V, Noordegraaf-Schouten MV (2015) Preparatory work to support the risk assessment for peri- and postmenopausal women taking food supplements containing isolated isoflavones. European Food Safety Authority. https://www.efsa.europa.eu/en/supporting/pub/en-877. Accessed 22 Nov 2019

  • Ueshima H (2007) Explanation for the Japanese paradox: prevention of increase in coronary heart disease and reduction in stroke. J Atheroscler Thromb 14(6):278–286

    Article  Google Scholar 

  • Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC (2004) Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril 82:145–148

    Article  CAS  Google Scholar 

  • Yan L, Spitznagel EL (2009) Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 89:1155–1163. https://doi.org/10.3945/ajcn.2008.27029

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM (2016) Isoflavones and prostate cancer: a review of some critical issues. Chin Med J 129:341–347. https://doi.org/10.4103/0366-6999.174488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z (2010) Flotation results from the Jiahu site, Wuyang county of Henan. In: Zhao Z (ed) Palaeoethnobotany: theories, method and practices. Academy, Beijing, pp 90–108

    Google Scholar 

  • Zhou S, Hu Y, Zhang B, Teng Z, Gan H, Yang Z, Wang Q, Huan M, Mei Q (2008) Dose dependent absorption, metabolism, and excretion of genistein in rats. J Agric Food Chem 56:8354–8359

    Article  CAS  Google Scholar 

  • Zubik L, Meydani M (2003) Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am J Clin Nutr 77:1459–1465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Fundação para a Ciência e a Tecnologia (FCT), I.P., for its support (project no. UID/QUI/00313/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Graça Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Campos, M.G. (2021). Soy Isoflavones. In: Xiao, J., Sarker, S.D., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4148-3_8

Download citation

Publish with us

Policies and ethics