Skip to main content

Design Considerations for Implantable Neural Circuits and Systems

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Microelectronic technologies have been exploited to make possible interfacing with a large number of neurons electronically and simultaneously. This advance not only accelerates brain research but also opens the era of “bioelectronic medicine,” in which a variety of neural disorders could be treated by implantable microsystems. To interact with neurons bidirectionally and chronically, the microsystem needs to incorporate not only neural recording and stimulation circuits but also wireless power and data transmission circuits. The latter is particularly important for medical devices to avoid the need for battery replacement. Therefore, this chapter introduces the design considerations for the key component circuits in an implantable microsystem. Moreover, microsystems integrating optical interfaces to achieve better flexibility and specificity in neuromodulation will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAC:

Automatic Amplitude Control

ADC:

Analog-to-Digital Converter

AP:

Action Potential

ASK:

Amplitude-Shift Keying

CCS:

Constant-Current Stimulation

COOK:

Cyclic On-Off Keying

ECoG:

Electrocorticography

EEG:

Electroencephalography

FSK:

Frequency-Shift Keying

HFSC:

High-Frequency, Switched Capacitor

LFP:

Local Field Potential

LNA:

Low-Noise Amplifier

L-RSK:

Load-Induced Resonance-Shift Keying

LSK:

Load-Shift Keying

NEF:

Noise Efficiency Factor

PP:

Parallel-Parallel

PS:

Parallel-Series

SCS:

Switched-Capacitor Stimulation

SoC:

System on a Chip

SP:

Series-Parallel

SS:

Series-Series

VCO:

Voltage-Controlled Oscillator

VMS:

Voltage-Mode Stimulation

WPT:

Wireless Power Transfer

References

  1. Sodagar, A.M., et al.: An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J. Solid State Circuits. 44(9), 2591–2604 (2009)

    Article  Google Scholar 

  2. Lambacher, A., et al.: Electrical imaging of neuronal activity by multi-transistor-array (MTA) recording at 7.8 mu m resolution. Appl. Phys. A-Mater. Sci. Process. 79(7), 1607–1611 (2004)

    Article  Google Scholar 

  3. Lebedev, M.A., Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  4. Bhatti, P.T., Wise, K.D.: A 32-site 4-channel high-density electrode array for a cochlear prosthesis. IEEE J. Solid State Circuits. 41(12), 2965–2973 (2006)

    Article  Google Scholar 

  5. Shire, D.B., et al.: Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 56(10), 2502–2511 (2009)

    Article  Google Scholar 

  6. Nicolelis, M.A.L.: Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (2003)

    Article  Google Scholar 

  7. Nicolelis, M.A.L.: Actions from thoughts. Nature. 409(6818), 403–407 (2001)

    Article  Google Scholar 

  8. Velliste, M., et al.: Cortical control of a prosthetic arm for self-feeding. Nature. 453(7198), 1098–1101 (2008)

    Article  Google Scholar 

  9. Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398), 372–U121 (2012)

    Article  Google Scholar 

  10. Miocinovic, S., et al.: History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 70(2), 163–171 (2013)

    Article  Google Scholar 

  11. Benabid, A.L., Benazzous, A., Pollak, P.: Mechanisms of deep brain stimulation. Mov. Disord. 17, S73–S74 (2002)

    Article  Google Scholar 

  12. Cagnan, H., et al.: The nature of tremor circuits in parkinsonian and essential tremor. Brain. 137, 3223–3234 (2014)

    Article  Google Scholar 

  13. Hamani, C., et al.: Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J. Psychiatr. Res. 44(11), 683–687 (2010)

    Article  Google Scholar 

  14. Rouaud, T., et al.: Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc. Natl. Acad. Sci. U. S. A. 107(3), 1196–1200 (2010)

    Article  Google Scholar 

  15. Chen, C.C., et al.: Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3-12 Hz in patients with dystonia. Exp. Neurol. 202(2), 480–486 (2006)

    Article  Google Scholar 

  16. Norlin, P., et al.: A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12(4), 414–419 (2002)

    Article  Google Scholar 

  17. Hara, S.A., Kim, B.J., Kuo, J.T., Lee, C.D., Meng, E., Pikov, V.: Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. J. Neural Eng. 13(6):066020 (2016)

    Google Scholar 

  18. Schalk, G.: Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces? Front. Neuroeng. 3, 9–9 (2010)

    Google Scholar 

  19. Tatum, W.O.: Handbook of EEG interpretation, 2nd edn. New York, Demos Medical (2014)

    Google Scholar 

  20. Millan, J.D., et al.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)

    Article  Google Scholar 

  21. Casson, A.J., et al.: Wearable electroencephalography what is it, why is it needed, and what does it entail? IEEE Eng. Med. Biol. Mag. 29(3), 44–56 (2010)

    Article  Google Scholar 

  22. Muller, R., et al.: A minimally invasive 64-channel wireless mu ECoG implant. IEEE J. Solid State Circuits. 50(1), 344–359 (2015)

    Article  Google Scholar 

  23. Benazzouz, A., et al.: Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience. 99(2), 289–295 (2000)

    Article  Google Scholar 

  24. Priori, A., et al.: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245, 77–86 (2013)

    Article  Google Scholar 

  25. Guo, J., Yuan, J., Chan, M.: Modeling of the cell-electrode interface noise for microelectrode arrays. IEEE Trans. Biomed. Circuits Syst. 6(6), 605–613 (2012)

    Article  Google Scholar 

  26. Mohan, R., et al.: A 0.6-V, 0.015-mm(2), time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits. 52(1), 298–308 (2017)

    Article  Google Scholar 

  27. Harrison, R.R., Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits. 38(6), 958–965 (2003)

    Article  Google Scholar 

  28. Wang, S., et al.: Leakage compensation scheme for ultra-high-resistance pseudo-resistors in neural amplifiers. Electron. Lett. 54(5) (2018)

    Google Scholar 

  29. Denison, T., et al.: A 2 mu W 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits. 42(12), 2934–2945 (2007)

    Article  Google Scholar 

  30. Jiang, W.L., et al.: A +/− 50-mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity correction. IEEE J. Solid State Circuits. 52(1), 173–184 (2017)

    Article  Google Scholar 

  31. Ng, K.A., Xu, Y.P.: A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J. Solid State Circuits. 51(3), 724–737 (2016)

    Article  Google Scholar 

  32. Chandrakumar, H., Markovic, D.: A 15.2-ENOB 5-kHz BW 4.5-mu W chopped CT delta sigma-ADC for artifact-tolerant neural recording front ends. IEEE J. Solid State Circuits. 53(12), 3470–3483 (2018)

    Article  Google Scholar 

  33. Johnson, B.C., et al.: An implantable 700 mu W 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery. In: 2017 Symposium on Vlsi Circuits, pp. C48–C49 (2017)

    Google Scholar 

  34. Steyaert, M.S.J., Sansen, W.M.C., Chang, Z.Y.: A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid State Circuits. 22(6), 1163–1168 (1987)

    Article  Google Scholar 

  35. Enz, C.C., Temes, G.C.: Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE. 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  36. Lin, Y.P., et al.: A battery-less, implantable neuro-electronic interface for studying the mechanisms of deep brain stimulation in rat models. IEEE Trans. Biomed. Circuits Syst. 10(1), 98–112 (2016)

    Article  Google Scholar 

  37. Verma, N., et al.: A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits. 45(4), 804–816 (2010)

    Article  Google Scholar 

  38. Bin Altaf, M.A., Zhang, C., Yoo, J.: A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid State Circuits. 50(11), 2728–2740 (2015)

    Article  Google Scholar 

  39. Fan, Q., et al.: A 1.8μW 1μV-offset capacitively-coupled chopper instrumentation amplifier in 65nm CMOS. In: 2010 Proceedings of ESSCIRC (2010)

    Google Scholar 

  40. Hong, G., Lieber, C.M.: Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 6, 330–345 (2019)

    Article  Google Scholar 

  41. Seymour, J.P., et al.: State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 3:16066 (2017)

    Google Scholar 

  42. Lopez, C.M., et al.: An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits. 49(1), 248–261 (2014)

    Article  Google Scholar 

  43. Ballini, M., et al.: A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid State Circuits. 49(11), 2705–2719 (2014)

    Article  Google Scholar 

  44. Eversmann, B., et al.: A neural tissue interfacing chip for in-vitro applications with 32k recording / stimulation channels on an active area of 2.6 mm2. In: 2011 Proceedings of the ESSCIRC (ESSCIRC) (2011)

    Google Scholar 

  45. Harrison, R.R., et al.: A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid State Circuits. 42(1), 123–133 (2007)

    Article  Google Scholar 

  46. Olsson, R.H., Wise, K.D.: A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid State Circuits. 40(12), 2796–2804 (2005)

    Article  Google Scholar 

  47. Aziz, J.N.Y., et al.: 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J. Solid State Circuits. 44(3), 995–1005 (2009)

    Article  MathSciNet  Google Scholar 

  48. Wikipedia. Rheobase (2019). Available from: https://en.wikipedia.org/wiki/Rheobase

  49. Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)

    Article  Google Scholar 

  50. Hsu, W.Y., Schmid, A.: Compact, energy-efficient high-frequency switched capacitor neural stimulator with active charge balancing. IEEE Trans. Biomed. Circuits Syst. 11(4), 878–888 (2017)

    Article  Google Scholar 

  51. Lee, H.M., Park, H., Ghovanloo, M.: A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J. Solid State Circuits. 50(1), 360–374 (2013)

    Google Scholar 

  52. Noorsal, E., et al.: A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J. Solid State Circuits. 47(1), 244–256 (2012)

    Article  Google Scholar 

  53. Williams, I., Constandinou, T.G.: An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)

    Article  Google Scholar 

  54. Arfin, S.K., Sarpeshkar, R.: An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012)

    Article  Google Scholar 

  55. van Dongen, M.N., Serdijn, W.A.: A power-efficient multichannel neural stimulator using high-frequency pulsed excitation from an unfiltered dynamic supply. IEEE Trans. Biomed. Circuits Syst. 10(1), 61–71 (2016)

    Article  Google Scholar 

  56. Hsu, W.Y.: System Design and Advanced Circuit Techniques for Bi-Directional Brain-Machine Interfaces. Lausanne, EPFL (2018)

    Google Scholar 

  57. Soltani, N., et al.: Cellular inductive powering system for weakly-linked resonant rodent implants. In: 2013 IEEE Biomedical Circuits and Systems Conference. pp. 350–353 (2013)

    Google Scholar 

  58. Kassiri, H., et al.: Battery-less tri-band-radio neuro-monitor and responsive neurostimulator for diagnostics and treatment of neurological disorders. IEEE J. Solid State Circuits. 51(5), 1274–1289 (2016)

    Article  Google Scholar 

  59. Wang, C.S., Covic, G.A., Stielau, O.H.: Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 51(1), 148–157 (2004)

    Article  Google Scholar 

  60. Baker, M.W., Sarpeshkar, R.: Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circuits Syst. 1(1), 28–38 (2007)

    Article  Google Scholar 

  61. Pan, J., et al.: Self-regulated wireless power and simultaneous 5MB/S reverse data over one pair of coils. In: 2018 IEEE Symposium on VLSI Circuits (2018)

    Google Scholar 

  62. Ahn, D., Hong, S.: Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61(5), 2225–2235 (2014)

    Article  Google Scholar 

  63. Ha, S., et al.: Energy recycling telemetry IC with simultaneous 11.5 mW power and 6.78 Mb/s backward data delivery over a single 13.56 MHz inductive link. IEEE J. Solid State Circuits. 51(11), 2664–2678 (2016)

    Article  Google Scholar 

  64. Mandal, S., Sarpeshkar, R.: Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2(4), 301–315 (2008)

    Article  Google Scholar 

  65. Lee, H.M., Ghovanloo, M.: An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(8), 1749–1760 (2011)

    Article  MathSciNet  Google Scholar 

  66. Yizhar, O., et al.: Optogenetics in neural systems. Neuron. 71(1), 9–34 (2011)

    Article  Google Scholar 

  67. Thompson, A.C., Stoddart, P.R., Jansen, E.D.: Optical stimulation of neurons. Curr. Mol. Imaging. 3(2), 162–177 (2014)

    Article  Google Scholar 

  68. Tye, K.M., Deisseroth, K.: Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13(4), 251–266 (2012)

    Article  Google Scholar 

  69. Alt, M.T., et al.: Let there be light-optoprobes for neural implants. Proc. IEEE. 105(1), 101–138 (2017)

    Article  Google Scholar 

  70. Izzo, A.D., et al.: Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys. J. 94(8), 3159–3166 (2008)

    Article  Google Scholar 

  71. Izzo, A.D., et al.: Laser stimulation of the auditory nerve. Lasers Surg. Med. 38(8), 745–753 (2006)

    Article  Google Scholar 

  72. Jenkins, M.W., et al.: Optical pacing of the adult rabbit heart. Biomed. Opt. Express. 4(9), 1626–1635 (2013)

    Article  Google Scholar 

  73. Wells, J., Kao, C., Jansen, E.D., Konrad, P., Mahadevan-Jansen, A.: Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 10(6):064003 (2005)

    Google Scholar 

  74. Liljemalm, R., Nyberg, T.: Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients. Ann. Biomed. Eng. 42(4), 822–832 (2014)

    Article  Google Scholar 

  75. Han, X.: In vivo application of optogenetics for neural circuit analysis. ACS Chem. Neurosci. 3(8), 577–584 (2012)

    Article  Google Scholar 

  76. Boyden, E.S., et al.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  77. Schwaerzle, M., et al.: Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications. In: 26th IEEE International Conference on Micro Electro Mechanical Systems. pp. 1029–1032 (2013)

    Google Scholar 

  78. Son, Y., et al.: In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci. Rep. 5 (2015)

    Google Scholar 

  79. Zorzos, A.N., et al.: Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37(23), 4841–4843 (2012)

    Article  Google Scholar 

  80. Zorzos, A.N., Boyden, E.S., Fonstad, C.G.: Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35(24), 4133–4135 (2010)

    Article  Google Scholar 

  81. Kampasi, K., et al.: Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst. Nanoeng. 4(1), 10 (2018)

    Article  Google Scholar 

  82. Park, H., et al.: The first neural probe integrated with light source (blue laser diode) for optical stimulation and electrical recording. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 2961–2964 (2011)

    Google Scholar 

  83. Li, B., et al.: A nanofabricated optoelectronic probe for manipulating and recording neural dynamics. J. Neural Eng. 15(4), 046008 (2018)

    Article  Google Scholar 

  84. Shin, G., et al.: Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron. 93(3), 509 (2017)

    Article  Google Scholar 

  85. McCall, J.G., et al.: Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 12(2), 219–237 (2017)

    Article  Google Scholar 

  86. Samineni, V.K., et al.: Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain. 158(11), 2108–2116 (2017)

    Article  Google Scholar 

  87. Noh, K.N., Park, S.I., Qazi, R., Zou, Z., Mickle, A.D., Grajales-Reyes, J.G., Jang, K.I., Gereau, RW 4th., Xiao, J., Rogers, J.A., Jeong, J.W.: Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small. 14(4):10.1002/smll.201702479 (2018)

    Google Scholar 

  88. Jia, Y., Khan, W., Lee, B., Fan, B., Madi, F., Weber, A., Li, W., Ghovanloo, M.: Wireless opto-electro neural interface for experiments with small freely behaving animals. J. Neural Eng. 15(4):046032 (2018)

    Google Scholar 

  89. Gagnon-Turcotte, G., et al.: A 0.13-mu m CMOS SoC for simultaneous multichannel optogenetics and neural recording. IEEE J. Solid State Circuits. 53(11), 3087–3100 (2018)

    Article  Google Scholar 

  90. Wu, F., et al.: Monolithically integrated mu LEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron. 88(6), 1136–1148 (2015)

    Article  Google Scholar 

  91. Yamakawa, T., et al.: Development of an implantable flexible probe for simultaneous near-infrared spectroscopy and electrocorticography. IEEE Trans. Biomed. Eng. 61(2), 388–395 (2014)

    Article  Google Scholar 

  92. Kwon, K.Y., et al.: Opto-mu ECoG array: a hybrid neural interface with transparent mu ECoG electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7(5), 593–600 (2013)

    Article  Google Scholar 

  93. Kim, T.-I., et al.: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 340(6129), 211–216 (2013)

    Article  Google Scholar 

  94. Mickle, A.D., et al.: A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 565(7739), 361–365 (2019)

    Article  Google Scholar 

  95. Stark, E., Koos, T., Buzsaki, G.: Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108(1), 349–363 (2012)

    Article  Google Scholar 

  96. Wang, J., Wagner, F., Borton, D.A., Zhang, J., Ozden, I., Burwell, R.D., Nurmikko, A.V., van Wagenen, R., Diester, I., Deisseroth, K.: Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9(1):016001 (2012)

    Google Scholar 

  97. Kilias, A., et al.: Optogenetic entrainment of neural oscillations with hybrid fiber probes. J. Neural Eng. 15(5), 056006 (2018)

    Article  Google Scholar 

  98. Park, S., et al.: One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612 (2017)

    Article  Google Scholar 

  99. Pisanello, F., et al.: Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron. 82(6), 1245–1254 (2014)

    Article  Google Scholar 

  100. Maghsoudloo, E., et al.: A smart neuroscience platform with wireless power transmission for simultaneous optogenetics and electrophysiological recording. In: 2018 IEEE International Symposium on Circuits and Systems (2018)

    Google Scholar 

  101. Kassiri, H., et al.: Arbitrary-waveform electro-optical intracranial neurostimulator with load-adaptive high-voltage compliance. IEEE Trans. Neural Syst. Rehabil. Eng. 27(4), 582–593 (2019)

    Article  Google Scholar 

  102. Ameli, R., et al.: A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013)

    Google Scholar 

  103. Wentz, C.T., et al.: A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8(4), 046021 (2011)

    Article  Google Scholar 

  104. Kassiri, H., et al.: Rail-to-rail-input dual-radio 64-channel closed-loop neurostimulator. IEEE J. Solid State Circuits. 52(11), 2793–2810 (2017)

    Google Scholar 

  105. Li, C., et al.: Overview of recent development on wireless sensing circuits and systems for healthcare and biomedical applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(2), 165–177 (2018)

    Article  Google Scholar 

  106. Ibrahim, A., Meng, M., Kiani, M.: A comprehensive comparative study on inductive and ultrasonic wireless power transmission to biomedical implants. IEEE Sensors J. 18(9), 3813–3826 (2018)

    Article  Google Scholar 

  107. Wirdatmadja, S.A., et al.: Wireless optogenetic neural dust for deep brain stimulation. In: 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services. pp. 640–645 (2016)

    Google Scholar 

  108. Charthad, J., et al.: A mm-sized wireless implantable device for electrical stimulation of peripheral nerves. IEEE Trans. Biomed. Circuits Syst. 12(2), 257–270 (2018)

    Article  Google Scholar 

  109. Lee, S., et al.: A 250 mu m x 57 mu m microscale opto-electronically transduced electrodes (MOTEs) for neural recording. IEEE Trans. Biomed. Circuits Syst. 12(6), 1256–1266 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hsu, WY., Hsieh, PH., Chen, H. (2021). Design Considerations for Implantable Neural Circuits and Systems. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics