Skip to main content

Central and Peripheral Neural Interfaces for Control of Upper Limb Actuators for Motor Rehabilitation After Stroke: Technical and Clinical Considerations

  • Living reference work entry
  • First Online:
Book cover Handbook of Neuroengineering

Abstract

Stroke is the leading cause of sensorimotor disability worldwide. Recently, neurorehabilitation therapies based on neural interfaces have paved the way toward new effective rehabilitation strategies exploiting neural plasticity mechanisms and have produced promising results even in extremely compromised patients. In this chapter, we review and discuss several aspects of the design and use of neural interfaces coupled with upper limb actuators (robotics and functional electrical stimulation (FES)) for motor rehabilitation after stroke. We first describe the burden of stroke and the limitations of currently used rehabilitation strategies. Secondly, we analyze different neural interfacing methods to reinforce the brain-to-muscle link leveraging previous neuroscientific findings on motor learning and functional neuroplasticity. We review current clinical trials using this technology and analyze its effect on the sensorimotor function of stroke patients, reported as clinical and neurophysiological parameters. Thirdly, we provide several guidelines for the optimal design of these systems to boost motor recovery. We conclude with some recommendations and thoughts for future development of this technology in stroke rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARAT:

Action Research Arm Test

ASH:

Ashworth scale

BCI:

Brain–computer interface

BMI:

Brain–machine interface

CCI:

Co-contraction index

CIMT:

Constraint-induced movement therapy

CMC:

Cortico-muscular coherence

CMI:

Cortico-muscular interface

CNS:

Central nervous system

CSP:

Common spatial pattern

CST:

Corticospinal tract

CVA:

Cerebrovascular accident

DoF:

Degree of freedom

ECoG:

Electrocorticography

EEG:

Electroencephalography

EMG:

Electromyography

ERD:

Event-related desynchronization

ERS:

Event-related synchronization

FES:

Functional electrical stimulation

FMA:

Fugl-Meyer assessment

fMRI:

Functional Magnetic Resonance Imaging

fNIRS:

Functional near-infrared spectroscopy

hBMI:

Hybrid brain–machine interface

LFP:

Local field potential

MAS:

Modified Ashworth scale

MEG:

Magnetoencephalography

M1:

Primary motor cortex

MI:

Myoelectric interface

ML:

Machine learning

MRCP:

Movement-related slow cortical potentials

NI:

Neural interface

NIBS:

Noninvasive brain stimulation

NMES:

Neuromuscular Magnetic Electrical Stimulation

OSF:

Optimal spatial filter

PNS:

Peripheral nervous system

RMS:

Root mean square

SCI:

Spinal cord injury

SEP:

Sensory evoked potentials

SIAS:

Stroke Impairment Assessment Set

sLDA:

Sparse linear discriminant analysis

SMR:

Sensorimotor rhythm

SNR:

Signal-to-noise ratio

STDP:

Spike time-dependent plasticity

SVM:

Support vector machine

tDCS:

Transcranial direct current stimulation

WMFT:

Wolf Motor Function Test

References

  1. Lam, T.K., Binns, M.A., Honjo, K., Dawson, D.R., Ross, B., Stuss, D.T., Black, S.E., Chen, J.J., Fujioka, T., Chen, J.L.: Variability in stroke motor outcome is explained by structural and functional integrity of the motor system. Sci. Rep. 8(1), 1–11 (2018). https://doi.org/10.1038/s41598-018-27541-8

    Article  Google Scholar 

  2. Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009). https://doi.org/10.1016/S1474-4422(09)70150-4

    Article  Google Scholar 

  3. Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., Wolfe, C.D.A.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 32(6), 1279–1284 (2001). https://doi.org/10.1161/01.STR.32.6.1279

    Article  Google Scholar 

  4. Coscia, M., Wessel, M.J., Chaudary, U., del Millán, J.R., Micera, S., Guggisberg, A., Vuadens, P., Donoghue, J., Birbaumer, N., Hummel, F.C.: Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain. 142(8), 2182–2197 (2019). https://doi.org/10.1093/brain/awz181

    Article  Google Scholar 

  5. Feigin, V.L., Norrving, B., George, M.G., Foltz, J.L., Roth, G.A., Mensah, G.A.: Prevention of stroke: a strategic global imperative. Nat. Rev. Neurol. 12, 501 (2016). https://doi.org/10.1038/nrneurol.2016.107

    Article  Google Scholar 

  6. Kolominsky-Rabas, P.L., Heuschmann, P.U., Marschall, D., Emmert, M., Baltzer, N., Neundo, B., Scho, O.: Lifetime cost of ischemic stroke in Germany: results and National Projections from a population-based stroke registry the Erlangen stroke project. (2006). https://doi.org/10.1161/01.STR.0000217450.21310.90

  7. Lee, H., Hwang, J., Jeng, J., Wang, J.: Quality-adjusted life expectancy (QALE) and loss of QALE for patients with ischemic. Stroke. and. 17, 739–744 (2010). https://doi.org/10.1161/STROKEAHA.109.573543

    Article  Google Scholar 

  8. Bell, J.A., Wolke, M.L., Ortez, R.C., Jones, T.A., Kerr, A.L.: Training intensity affects motor rehabilitation efficacy following unilateral ischemic insult of the sensorimotor cortex in C57BL/6 mice. (2015). https://doi.org/10.1177/1545968314553031

  9. Kwakkel, G., Van Peppen, R., Wagenaar, R.C., Dauphinee, S.W., Richards, C., Ashburn, A., Miller, K., Lincoln, N., Partridge, C., Wellwood, I., Langhorne, P.: Effects of augmented exercise therapy time after stroke, 2529–2536 (2004). https://doi.org/10.1161/01.STR.0000143153.76460.7d

  10. Wu, X., Guarino, P., Lo, A.C., Peduzzi, P., Wininger, M.: Long-term effectiveness of intensive therapy in chronic stroke. 35 (2016). https://doi.org/10.1177/1545968315608448

  11. Belda-Lois, J.-M., Mena-del-Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante, T., Brunner, C., Rea, M.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 66(December) (2011)

    Google Scholar 

  12. Lin, K.-C., Chang, Y., Wu, C., Chen, Y.: Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabilit. Neural Rep. 23, 441–448 (2009)

    Article  Google Scholar 

  13. Taub, E., Uswatte, G., Pidikiti, R.: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. 36(3) (1999)

    Google Scholar 

  14. Wolf, S.L., Winstein, C.J., Miller, J.P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K.E., Nichols-Larsen, D.: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. J. Am. Med. Assoc. 296(17), 2095–2104 (2006). https://doi.org/10.1001/jama.296.17.2095

    Article  Google Scholar 

  15. Birbaumer, N., Murguialday, A.R., Cohen, L.: Brain-computer interface in paralysis. Curr. Opin. Neurol. 21(6), 634–638 (2008). https://doi.org/10.1097/WCO.0b013e328315ee2d

    Article  Google Scholar 

  16. Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., Ackerley, S.J.: Proportional recovery after stroke depends on corticomotor integrity. Ann. Neurol. 78(6), 848–859 (2015). https://doi.org/10.1002/ana.24472

    Article  Google Scholar 

  17. Winters, C., Van Wegen, E.E.H., Daffertshofer, A., Kwakkel, G.: Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. (2015). https://doi.org/10.1177/1545968314562115

  18. Gazzaniga, M.S.: The Cognitive Neurosciences. MIT Press (2004) https://mitpress.mit.edu/books/cognitive-neurosciences

    Google Scholar 

  19. Gould, E., Tanapat, P., Hastings, N.B., Shors, T.J.: Neurogenesis in adulthood: a possible role in learning. 6613(May), 186–192 (1999)

    Google Scholar 

  20. Sampaio-baptista, C., Khrapitchev, A.A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., Deluca, G.C., Miller, K.L., Taylor, A., Thomas, N., Kleim, J., Sibson, N.R., Bannerman, D., Johansen-berg, H.: Motor skill learning induces changes in white matter microstructure and myelination. 33(50), 19499–19503 (2013). https://doi.org/10.1523/JNEUROSCI.3048-13.2013

  21. Murphy, T.H., Corbett, D.: Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861 (2009). https://doi.org/10.1038/nrn2735

    Article  Google Scholar 

  22. Jackson, A., Zimmermann, J.B.: Neural interfaces for the brain and spinal cord – restoring motor function. Nat. Rev. Neurol. 8, 690 (2012). https://doi.org/10.1038/nrneurol.2012.219

    Article  Google Scholar 

  23. Nishimura, Y., Perlmutter, S.I., Eaton, R.W., Fetz, E.E.: Article spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron. 80(5), 1301–1309 (2013). https://doi.org/10.1016/j.neuron.2013.08.028

    Article  Google Scholar 

  24. Nishimura, Y., Perlmutter, S.I., Fetz, E.E.: Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. 7(April), 1–9 (2013). https://doi.org/10.3389/fncir.2013.00057

  25. Edwardson, M.A., Avery, D.H., Fetz, E.E.: Volitional muscle activity paired with transcranial magnetic stimulation increases corticospinal excitability. 8(January), 1–11 (2015). https://doi.org/10.3389/fnins.2014.00442

  26. Sasada, S., Kato, K., Kadowaki, S., Groiss, S.J., Ugawa, Y., Komiyama, T., Nishimura, Y.: Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor Center in man. J. Neurosci. 34(33), 11131 LP–11111142 (2014). https://doi.org/10.1523/JNEUROSCI.4674-13.2014

    Article  Google Scholar 

  27. Fetz, E.E.: Restoring motor function with bidirectional neural interfaces. In: Dancause, N., Nadeau, S., S. B. T.-P, Rossignol, B.R. (eds.) Sensorimotor Rehabilitation, vol. 218, pp. 241–252. Elsevier (2015). https://doi.org/10.1016/bs.pbr.2015.01.001

    Chapter  Google Scholar 

  28. Lucas, T.H., Fetz, E.E.: Myo-Cortical crossed feedback reorganizes primate motor cortex output. 33(12), 5261–5274 (2013). https://doi.org/10.1523/JNEUROSCI.4683-12.2013

  29. McPherson, J.G., Miller, R.R., Perlmutter, S.I.: Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc. Natl. Acad. Sci. 112(39), 12193–12198 (2015). https://doi.org/10.1073/pnas.1505383112

    Article  Google Scholar 

  30. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L.G., Birbaumer, N.: Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013). https://doi.org/10.1002/ana.23879

    Article  Google Scholar 

  31. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a Neuromagnetic brain-computer Interface (BCI) system for chronic stroke, 910–917 (2008). https://doi.org/10.1161/STROKEAHA.107.505313

  32. Chaudhary, U., Birbaumer, N., Ramos-Murguialday, A.: Brain – computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12(9), 513–525 (2016). https://doi.org/10.1038/nrneurol.2016.113

    Article  Google Scholar 

  33. Wolpaw, J.R., Birbaumer, N., Mcfarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain – computer interfaces for communication and control. 113, 767–791 (2002)

    Google Scholar 

  34. López-Larraz, E., Sarasola-Sanz, A., Irastorza-Landa, N., Birbaumer, N., Ramos-Murguialday, A.: Brain-machine interfaces for rehabilitation in stroke: a review. NeuroRehabilitation. 43(1), 77–97 (2018). https://doi.org/10.3233/NRE-172394

    Article  Google Scholar 

  35. López-Larraz, E., Birbaumer, N., Ramos-Murguialday, A.: A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2000–2003 (2018)

    Chapter  Google Scholar 

  36. López-Larraz, E., Figueiredo, T.C., Insausti-Delgado, A., Ziemann, U., Birbaumer, N., Ramos-murguialday, A.: Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: an artifact removal relevance analysis. NeuroImage: Clinical. 20(July), 972–986 (2018). https://doi.org/10.1016/j.nicl.2018.09.035

    Article  Google Scholar 

  37. López-Larraz, E., Ibáñez, J., Trincado-Alonso, F., Monge-Pereira, E., Pons, J.L., Montesano, L.: Comparing recalibration strategies for electroencephalography-based decoders of movement intention in neurological patients with motor disability. Int. J. Neural Syst. 28(07), 1750060 (2018)

    Article  Google Scholar 

  38. Birbaumer, N., Cohen, L.G.: Brain – computer interfaces: communication and restoration of movement in paralysis. 3(October 2006), 621–636 (2007). https://doi.org/10.1113/jphysiol.2006.125633

  39. Ang, K.K., Chua, K.S.G., Phua, K.S., Wang, C., Chin, Z.Y., Kuah, C.W.K., Low, W., Guan, C.: A randomized controlled trial of EEG-based motor imagery brain-computer Interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46(4), 310–320 (2015). https://doi.org/10.1177/1550059414522229

    Article  Google Scholar 

  40. Ang, K.K., Guan, C., Phua, K.S., Wang, C., Zhou, L., Tang, K.Y., Ephraim Joseph, G.J., Kuah, C.W.K., Chua, K.S.G.: Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 7(July), 1–9 (2014). https://doi.org/10.3389/fneng.2014.00030

    Article  Google Scholar 

  41. Broetz, D., Braun, C., Weber, C., Soekadar, S.R., Caria, A., Birbaumer, N.: Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair. 24(7), 674–679 (2010). https://doi.org/10.1177/1545968310368683

    Article  Google Scholar 

  42. Frolov, A.A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L., Nadareyshvily, G., Bushkova, Y.: Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front. Neurosci. 11, 400 (2017)

    Article  Google Scholar 

  43. Kasashima-Shindo, Y., Fujiwara, T., Ushiba, J., Matsushika, Y., Kamatani, D., Oto, M., Ono, T., Nishimoto, A., Shindo, K., Kawakami, M.: Brain–computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: proof of concept study. J. Rehabil. Med. 47(4), 318–324 (2015)

    Article  Google Scholar 

  44. Ono, T., Shindo, K., Kawashima, K., Ota, N., Ito, M., Ota, T., Mukaino, M., Fujiwara, T., Kimura, A., Liu, M., Ushiba, J.: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front. Neuroeng. 7(July) (2014). https://doi.org/10.3389/fneng.2014.00019

  45. Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A.G., Millán, J.R.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun., 1–13 (2018). https://doi.org/10.1038/s41467-018-04673-z

  46. Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33(4), 203–211 (2009)

    Article  Google Scholar 

  47. Kim, T., Kim, S., Lee, B.: Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup. Ther. Int. 23(1), 39–47 (2016)

    Article  Google Scholar 

  48. Li, M., Liu, Y., Wu, Y., Liu, S., Jia, J., Zhang, L.: Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training. Int. J. Neurosci. 124(6), 403–415 (2014)

    Article  Google Scholar 

  49. Mukaino, M., Ono, T., Shindo, K., Fujiwara, T., Ota, T., Kimura, A., Liu, M., Ushiba, J.: Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. J. Rehabil. Med. 46(4), 378–382 (2014)

    Article  Google Scholar 

  50. Gharabaghi, A., Naros, G., Walter, A., Grimma, F., Schuermeyera, M., Roth, A., Bogdan, M., Rosenstielc, W., Birbaumer, N.: From assistance towards restoration with an implanted brain-computer interface based on epidural electrocorticography: a single case study. Restor. Neurol. Neurosci. 1–9 (2014). https://doi.org/10.3233/RNN-140387

  51. Bai, Z., Fong, K.N.K., Zhang, J.J., Chan, J., Ting, K.H.: Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J. Neuroeng. Rehabil. 17(1), 1–20 (2020). https://doi.org/10.1186/s12984-020-00686-2

    Article  Google Scholar 

  52. Cervera, M.A., Soekadar, S.R., Ushiba, J., del Millán, J.R., Liu, M., Birbaumer, N., Garipelli, G.: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5(5), 651–663 (2018). https://doi.org/10.1002/acn3.544

    Article  Google Scholar 

  53. Schlaug, G., Renga, V., Nair, D.: Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65(12), 1571–1576 (2008)

    Article  Google Scholar 

  54. Song, J., Young, B.M., Nigogosyan, Z., Walton, L.M., Nair, V.A., Grogan, S.W., Tyler, M.E., Farrar-Edwards, D., Caldera, K.E., Sattin, J.A.: Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. Front. Neuroeng. 7, 31 (2014)

    Article  Google Scholar 

  55. Ward, N.S., Brown, M.M., Thompson, A.J., Frackowiak, R.S., J.: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. (2003). https://doi.org/10.1093/brain/awg245

  56. Ray, A.M., Figueiredo, T.D.C., López-Larraz, E., Birbaumer, N., Ramos-Murguialday, A.: Brain oscillatory activity as a biomarker of motor recovery in chronic stroke. Hum. Brain Mapp., (forthcoming). (2020). https://doi.org/10.1002/hbm.24876

  57. Mane, R., Chew, E., Phua, K.S., Ang, K.K., Robinson, N., Vinod, A.P., Guan, C.: Prognostic and monitory EEG-biomarkers for BCI upper-limb stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. (2019)

    Google Scholar 

  58. Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., Mattia, D.: Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77(5), 851–865 (2015). https://doi.org/10.1002/ana.24390

    Article  Google Scholar 

  59. Carino-Escobar, R.I., Carrillo-Mora, P., Valdés-Cristerna, R., Rodriguez-Barragan, M.A., Hernandez-Arenas, C., Quinzaños-Fresnedo, J., Galicia-Alvarado, M.A., Cantillo-Negrete, J.: Longitudinal analysis of stroke patients’ brain rhythms during an intervention with a brain-computer Interface. Neural Plast. 2019 (2019)

    Google Scholar 

  60. Caria, A., da Rocha, J.L.D., Gallitto, G., Birbaumer, N., Sitaram, R., Murguialday, A.R.: Brain–machine Interface induced Morpho-functional Remodeling of the neural motor system in severe chronic stroke. Neurotherapeutics. (2019). https://doi.org/10.1007/s13311-019-00816-2

  61. Belardinelli, P., Laer, L., Ortiz, E., Braun, C., Gharabaghi, A.: Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. NeuroImage: Clinical. 14, 726–733 (2017). https://doi.org/10.1016/j.nicl.2017.03.005

    Article  Google Scholar 

  62. Gharabaghi, A., Naros, G., Khademi, F., Jesser, J., Spüler, M.: Learned self-regulation of the lesioned brain with epidural electrocorticography. December. (2014). https://doi.org/10.3389/fnbeh.2014.00429

  63. Lotte, F., Signal, E., Techniques, C.: Study of Electroencephalographic Signal Processing and Classification Techniques towards the Use of Brain-Computer Interfaces in Virtual Reality Applications. INSA de Rennes (2008)

    Google Scholar 

  64. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications, vol. 8. Academic Press (2005)

    Google Scholar 

  65. Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46(2), 138–146 (1979). https://doi.org/10.1016/0013-4694(79)90063-4

    Article  Google Scholar 

  66. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. 110, 1842–1857 (1999)

    Google Scholar 

  67. Kim, S.-G., Jennings, J.E., Strupp, J.P., Andersen, P., U\v{g}urbil, K.: Functional MRI of human motor cortices during overt and imagined finger movements. Int. J. Imaging Syst. Technol. 6(2–3), 271–279 (1995). https://doi.org/10.1002/ima.1850060218

  68. Stephan, K.M., Fink, G.R., Passingham, R.E., Silbersweig, D., Ceballos-Baumann, A.O., Frith, C.D., Frackowiak, R.S.: Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J. Neurophysiol. 73(1), 373–386 (1995). https://doi.org/10.1152/jn.1995.73.1.373

    Article  Google Scholar 

  69. Ward, N.S., Brown, M.M., Thompson, A.J., Frackowiak, R.S.J.: Neural correlates of outcome after stroke: a cross-sectional fMRI study, 1430–1448 (2003). https://doi.org/10.1093/brain/awg145

  70. Luft, A.R., Waller, S., Forrester, L., Smith, G.V., Whitall, J., Macko, R.F., Schulz, B., Hanley, D.F.: Lesion location alters brain activation in chronically impaired stroke survivors. 21, 924–935 (2004). https://doi.org/10.1016/j.neuroimage.2003.10.026

  71. Park, W., Kwon, G.H., Kim, Y., Lee, J., Kim, L.: EEG response varies with lesion location in patients with chronic stroke. J. Neuroeng. Rehabil., 1–10 (2016). https://doi.org/10.1186/s12984-016-0120-2

  72. Ray, A.M., López-Larraz, E., Figueiredo, T.C., Birbaumer, N., Ramos-Murguialday, A.: Movement-related brain oscillations vary with lesion location in severely paralyzed chronic stroke patients. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1664–1667 (2017). https://doi.org/10.1109/EMBC.2017.8037160

    Chapter  Google Scholar 

  73. López-Larraz, E., Ray, A.M., Figueiredo, T.C., Bibián, C., Birbaumer, N., Ramos-Murguialday, A.: Stroke lesion location influences the decoding of movement intention from EEG. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2017). https://doi.org/10.1109/EMBC.2017.8037504

    Chapter  Google Scholar 

  74. Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? 117, 2341–2356 (2006). https://doi.org/10.1016/j.clinph.2006.04.025

  75. Yilmaz, O., Birbaumer, N., Ramos-Murguialday, A.: Movement related slow cortical potentials in severely paralyzed chronic stroke patients. Front. Hum. Neurosci. 8(January), 1033(1-7) (2015). https://doi.org/10.3389/fnhum.2014.01033

    Article  Google Scholar 

  76. Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J.T., Niazi, I.K., Kostic, V., Pavlovic, A., Radovanovic, S., Djuric-Jovicic, M., Agosta, F., Dremstrup, K., Farina, D.: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 115(3), 1410–1421 (2016). https://doi.org/10.1152/jn.00918.2015

    Article  Google Scholar 

  77. Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L., Methods, N.: Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Meth. (2000)

    Google Scholar 

  78. Slutzky, M.W., Jordan, L.R., Krieg, T., Chen, M., Mogul, D.J., Miller, E.: Optimal spacing of surface electrode arrays for brain machine Interface applications. J. Neural Eng. 7(2), 6–8 (2010). https://doi.org/10.1088/1741-2560/7/2/026004.Optimal

    Article  Google Scholar 

  79. Ball, T., Kern, M., Mutschler, I., Aertsen, A., Schulze-bonhage, A.: Signal quality of simultaneously recorded invasive and non-invasive EEG. 46, 708–716 (2009). https://doi.org/10.1016/j.neuroimage.2009.02.028

  80. Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A., Mehring, C.: Hand movement direction decoded from MEG and EEG. 28(4), 1000–1008 (2008). https://doi.org/10.1523/JNEUROSCI.5171-07.2008

  81. Freeman, W.J., Holmes, M.D., Burke, B.C., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114(6), 1053–1068 (2003). https://doi.org/10.1016/S1388-2457(03)00045-2

    Article  Google Scholar 

  82. Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma, R., Yokoi, H., Kamitani, Y., Yoshimine, T.: Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114(June), 1715–1722 (2011). https://doi.org/10.3171/2011.1.JNS101421

    Article  Google Scholar 

  83. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Kamitani, Y., Yoshimine, T.: Electrocorticographic control of a prosthetic arm in paralyzed patients, 353–361 (2012). https://doi.org/10.1002/ana.22613

  84. Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C.: Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. 8(8), 1–9 (2013). https://doi.org/10.1371/journal.pone.0072085

  85. Spüler, M., Grimm, F., Gharabaghi, A., Bogdan, M., Rosenstiel, W.: Comparing Methods for decoding movement trajectory from ECoG in chronic stroke patients. (2016). https://doi.org/10.1007/978-3-319-26242-0

  86. Spüler, M., Rosenstiel, W., Bogdan, M.: Predicting wrist movement trajectory from Ipsilesional ECoG in chronic stroke patients. October. (2014). https://doi.org/10.13140/2.1.5134.5928

  87. Spüler, M., Walter, A., Ramos Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., Bogdan, M.: Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J. Neural Eng. 11(6), 066008 (2014). https://doi.org/10.1088/1741-2560/11/6/066008

    Article  Google Scholar 

  88. Ramos-Murguialday, A., Schürholz, M., Caggiano, V., Wildgruber, M., Caria, A., Hammer, E.M., Halder, S., Birbaumer, N.: Proprioceptive feedback and brain computer Interface (BCI) based neuroprostheses. PLoS One. 7(10) (2012). https://doi.org/10.1371/journal.pone.0047048

  89. Ramos, A., Halder, S., Birbaumer, N.: Proprioceptive feedback in BCI. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp. 279–282 (2009). https://doi.org/10.1109/NER.2009.5109287

    Chapter  Google Scholar 

  90. Ramos-Murguialday, A., Curado, M.R., Broetz, D., Yilmaz, Ö., Brasil, F.L., Liberati, G., Garcia-Cossio, E., Cho, W., Caria, A., Cohen, L.G., Birbaumer, N.: Brain-machine Interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil. Neural Repair. 33(3), 188–198 (2019). https://doi.org/10.1177/1545968319827573

    Article  Google Scholar 

  91. Antelis, J.M., Montesano, L., Ramos-Murguialday, A., Birbaumer, N., Minguez, J.: Decoding upper limb movement attempt from EEG measurements of the Contralesional motor cortex in chronic stroke patients. I.E.E.E. Trans. Biomed. Eng. (2017). https://doi.org/10.1109/TBME.2016.2541084

  92. Ganguly, K., Secundo, L., Ranade, G., Orsborn, A., Edward, F., Dimitrov, D.F., Wallis, J.D., Barbaro, N.M., Robert, T.: Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29(41), 12948–12956 (2009). https://doi.org/10.1523/JNEUROSCI.2471-09.2009.Cortical

    Article  Google Scholar 

  93. Liu, Y., Sharma, M., Gaona, C., Breshears, J., Roland, J., Freudenburg, Z., Leuthardt, E., Weinberger, K.Q.: Decoding ipsilateral finger movements from ecog signals in humans. Adv. Neural Inf. Proces. Syst., 1468–1476 (2010)

    Google Scholar 

  94. Scherer, R., Zanos, S., Miller, K.J., Rao, R.P.N.: Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces. August. (2009). https://doi.org/10.3171/2009.4.FOCUS0981

  95. Spüler, M., López-Larraz, E., Ramos-Murguialday, A.: On the design of EEG-based movement decoders for completely paralyzed stroke patients. J. Neuroeng. Rehabil. 15(1), 110 (2018)

    Article  Google Scholar 

  96. Bundy, D.T., Wronkiewicz, M., Sharma, M., Moran, D.W., Corbetta, M., Leuthardt, E.C.: Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain computer interfaces in hemiplegic stroke survivors. 9(3), 1–23 (2012). https://doi.org/10.1088/1741-2560/9/3/036011.Using

  97. Hammond, D.C., Gunkelman, J.: The Art of Artifacting. Society for Neuronal Regulation (2001)

    Google Scholar 

  98. Islam, M. K. (2015). Artifact Characterization, Detection and Removal from Neural Signals

    Google Scholar 

  99. Klass, D.W.: The continuing challenge of artifacts in the EEG. Am. J. EEG Technol. 35(4), 239–269 (1995)

    Article  Google Scholar 

  100. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal – state-of-the-art and guidelines. J. Neural Eng. 12(3), 31001 (2015)

    Article  Google Scholar 

  101. Insausti-Delgado, A., López-Larraz, E., Bibián, C., Nishimura, Y., Birbaumer, N., Ramos-Murguialday, A.: Influence of trans-spinal magnetic stimulation in electrophysiological recordings for closed-loop rehabilitative systems. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2518–2521 (2017)

    Chapter  Google Scholar 

  102. Pontifex, M.B., Gwizdala, K.L., Parks, A.C., Billinger, M., Brunner, C.: Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts. Psychophysiology. 54(3), 386–398 (2016)

    Article  Google Scholar 

  103. López-Larraz, E., Bibián, C., Birbaumer, N., Ramos-Murguialday, A.: Influence of artifacts on movement intention decoding from EEG activity in severely paralyzed stroke patients. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 901–906 (2017)

    Chapter  Google Scholar 

  104. Ofner, P., Schwarz, A., Pereira, J., Müller-Putz, G.R.: Movements of the same upper limb can be classified from low-frequency time-domain EEG signals. In: Proceedings of the Sixth International Brain–Computer Interface Meeting: BCI Past, Present, and Future (June 2016) (2016)

    Google Scholar 

  105. Hoffmann, U., Cho, W., Ramos-Murguialday, A., Keller, T.: Detection and removal of stimulation artifacts in electroencephalogram recordings. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7159–7162 (2011)

    Chapter  Google Scholar 

  106. Walter, A., Murguialday, A.R., Rosenstiel, W., Birbaumer, N., Bogdan, M.: Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Front. Neural Circ. 6, 87 (2012)

    Google Scholar 

  107. Young, D., Willett, F., Memberg, W.D., Murphy, B., Walter, B., Sweet, J., Miller, J., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J. Neural Eng. 15(2), 26014 (2018)

    Article  Google Scholar 

  108. Iturrate, I., Pereira, M., del Millán, J.R.: Closed-loop electrical neurostimulation: challenges and opportunities. Curr. Opin. Biomed. Eng. (2018)

    Google Scholar 

  109. Nitsche, M.A., Paulus, W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(3), 633–639 (2000)

    Article  Google Scholar 

  110. Peinemann, A., Reimer, B., Löer, C., Quartarone, A., Münchau, A., Conrad, B., Siebner, H.R.: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin. Neurophysiol. 115(7), 1519–1526 (2004)

    Article  Google Scholar 

  111. Ridding, M.C., McKay, D.R., Thompson, P.D., Miles, T.S.: Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol. 112(8), 1461–1469 (2001)

    Article  Google Scholar 

  112. Zrenner, C., Desideri, D., Belardinelli, P., Ziemann, U.: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul. 11(2), 374–389 (2018)

    Article  Google Scholar 

  113. Vidaurre, C., Schlogl, A., Cabeza, R., Scherer, R., Pfurtscheller, G.: A fully on-line adaptive BCI. I.E.E.E. Trans. Biomed. Eng. 53(6), 1214–1219 (2006)

    Google Scholar 

  114. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3), 386–394 (1997)

    Article  Google Scholar 

  115. Garipelli, G., Chavarriaga, R., del R Millán, J.: Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J. Neural Eng. 10(3), 36014 (2013)

    Article  Google Scholar 

  116. Jochumsen, M., Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Farina, D., Dremstrup, K.: Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. J. Neural Eng. 12(5), 56003 (2015)

    Article  Google Scholar 

  117. Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn. 45(6), 2137–2144 (2012). https://doi.org/10.1016/j.patcog.2011.04.018

    Article  MATH  Google Scholar 

  118. Lopez-Larraz, E., Montesano, L., Gil-Agudo, A., Minguez, J.: Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J. Neuroeng. Rehabil. 11(1), 153 (2014). https://doi.org/10.1186/1743-0003-11-153

    Article  Google Scholar 

  119. Niazi, I.K., Jiang, N., Tiberghien, O., Nielsen, J.F., Dremstrup, K., Farina, D.: Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 8(6), 66009 (2011)

    Article  Google Scholar 

  120. Blankertz, B., Kawanabe, M., Tomioka, R., Hohlefeld, F., Müller, K., Nikulin, V.V.: Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing. Adv. Neural Inf. Proces. Syst., 113–120 (2008)

    Google Scholar 

  121. Oostendorp, T.F., van Oosterom, A.: The surface Laplacian of the potential: theory and application. I.E.E.E. Trans. Biomed. Eng. 43(4), 394–405 (1996)

    Google Scholar 

  122. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  123. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  124. Bashashati, H., Ward, R.K., Birch, G.E., Bashashati, A.: Comparing different classifiers in sensory motor brain computer interfaces. PLoS One. 10(6), e0129435 (2015)

    Article  Google Scholar 

  125. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  126. Ramos-Murguialday, A., Birbaumer, N.: Brain oscillatory signatures of motor tasks. J. Neurophysiol. 113(10), 3663–3682 (2015)

    Article  Google Scholar 

  127. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32 (2007)

    Article  Google Scholar 

  128. Blakemore, S.J., Frith, C.D., Wolpert, D.M.: Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11(5), 551–559 (1999). https://doi.org/10.1162/089892999563607

    Article  Google Scholar 

  129. Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.-R.: Towards zero training for brain-computer interfacing. PLoS One. 3(8), e2967 (2008)

    Article  Google Scholar 

  130. Sburlea, A.I., Montesano, L., Minguez, J.: Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration. J. Neural Eng. 12(3), 36007 (2015)

    Article  Google Scholar 

  131. Shiman, F., López-Larraz, E., Sarasola-Sanz, A., Irastorza-Landa, N., Spüler, M., Birbaumer, N., Ramos-Murguialday, A.: Classification of different reaching movements from the same limb using EEG. J. Neural Eng. 14(4) (2017). https://doi.org/10.1088/1741-2552/aa70d2

  132. Dangi, S., Orsborn, A.L., Moorman, H.G., Carmena, J.M.: Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural Comput. 25(7), 1693–1731 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  133. Orsborn, A.L., Dangi, S., Moorman, H.G., Carmena, J.M.: Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 468–477 (2012)

    Article  Google Scholar 

  134. Takeuchi, N., Izumi, S.-I.: Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012 (2012)

    Google Scholar 

  135. Jones, T.A.: Motor compensation and its effects on neural reorganization after stroke. Nat. Rev. Neurosci. 18(5), 267–280 (2017). https://doi.org/10.1038/nrn.2017.26

    Article  Google Scholar 

  136. Takeuchi, N., Tada, T., Chuma, T., Matsuo, Y., Ikoma, K.: Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke. 38(5), 1551–1556 (2007)

    Article  Google Scholar 

  137. Lee, M.Y., Park, J.W., Park, R.J., Hong, J.H., Son, S.M., Ahn, S.H., Cho, Y.W., Jang, S.H.: Cortical activation pattern of compensatory movement in stroke patients. NeuroRehabilitation. 25(4), 255–260 (2009). https://doi.org/10.3233/nre-2009-0523

    Article  Google Scholar 

  138. Cirstea, M.C., Levin, M.F.: Compensatory strategies for reaching in stroke. Brain. 123(5), 940–953 (2000). https://doi.org/10.1093/brain/123.5.940

    Article  Google Scholar 

  139. Cheung, V.C.K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, E.: Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. 109(36), 14652–14656 (2012). https://doi.org/10.1073/pnas.1212056109

    Article  Google Scholar 

  140. García-Cossio, E., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: Cortex integrity relevance in muscle synergies in severe chronic stroke. Front. Hum. Neurosci. 8(September), 744 (2014). https://doi.org/10.3389/fnhum.2014.00744

    Article  Google Scholar 

  141. Bizzi, E., Cheung, V.C.K., d’Avella, A., Saltiel, P., Tresch, M.: Combining modules for movement. Brain Res. Rev. 57(1), 125–133 (2008). https://doi.org/10.1016/j.brainresrev.2007.08.004

    Article  Google Scholar 

  142. d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006). https://doi.org/10.1523/JNEUROSCI.0830-06.2006

    Article  Google Scholar 

  143. Flash, T., Hochner, B.: Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15(6), 660–666 (2005). https://doi.org/10.1016/j.conb.2005.10.011

    Article  Google Scholar 

  144. Tresch, M.C., Saltiel, P., Avella, A., Bizzi, E.: Coordination and localization in spinal motor systems. Brain Res. Rev. 40, 66–79 (2002)

    Article  Google Scholar 

  145. Dewald, J.P.A., Sheshadri, V., Dawson, M.L., Beer, R.F.: Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top. Stroke Rehabil. 8(1), 1–12 (2001)

    Article  Google Scholar 

  146. Lee, S.W., Wilson, K.M., Lock, B.A., Kamper, D.G.: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 558–566 (2011). https://doi.org/10.1109/TNSRE.2010.2079334

    Article  Google Scholar 

  147. Ramos-Murguialday, A., Garcia-Cossio, E., Walter, A., Cho, W., Broetz, D., Bogdan, M., Cohen, L.G., Birbaumer, N.: Decoding upper limb residual muscle activity in severe chronic stroke. Ann. Clin. Transl. Neurol. (2015). https://doi.org/10.1002/acn3.122

  148. Zhang, X., Zhou, P.: High-density myoelectric pattern recognition toward improved stroke rehabilitation. I.E.E.E. Trans. Biomed. Eng. 59(6), 1649–1657 (2012). https://doi.org/10.1109/TBME.2012.2191551

    Article  Google Scholar 

  149. Ho, N.S.K., Tong, K.Y., Hu, X.L., Fung, K.L., Wei, X.J., Rong, W., Susanto, E.A.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5 (2011). https://doi.org/10.1109/ICORR.2011.5975340

    Chapter  Google Scholar 

  150. Hu, X., Tong, K., Wei, X., Rong, W., Susanto, E., Ho, S.: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 23(5), 1065–1074 (2013). https://doi.org/10.1016/J.JELEKIN.2013.07.007

    Article  Google Scholar 

  151. Huang, Y., Lai, W.P., Qian, Q., Hu, X., Tam, E.W.C., Zheng, Y.: Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for. Biomed. Eng. Online. 17(1), 91 (2018). https://doi.org/10.1186/s12938-018-0516-2

    Article  Google Scholar 

  152. Lu, Z., Tong, K., Shin, H., Li, S., Zhou, P.: Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient. Front. Neurol. 8, 107 (2017). https://doi.org/10.3389/fneur.2017.00107

    Article  Google Scholar 

  153. Song, R., Tong, K., Hu, X., Zhou, W.: Myoelectrically controlled wrist robot for stroke rehabilitation. J. Neuroeng. Rehabil. 10(1), 1 (2013). https://doi.org/10.1186/1743-0003-10-52

    Article  Google Scholar 

  154. Stein, J., Narendran, K., McBean, J., Krebs, K., Hughes, R.: Electromyography-controlled exoskeletal upper-limb powered orthosis for exercise training after stroke. Am. J. Phys. Med. Rehabil. 86(4), 255–261 (2007). https://doi.org/10.1097/PHM.0b013e3180383cc5

    Article  Google Scholar 

  155. Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin. Neurophysiol. 124(10), 2008–2015 (2013). https://doi.org/10.1016/J.CLINPH.2013.03.030

    Article  Google Scholar 

  156. Hara, Y., Ogawa, S., Tsujiuchi, K., Muraoka, Y.: A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation. Disabil. Rehabil. 30(4), 296–304 (2008). https://doi.org/10.1080/09638280701265539

    Article  Google Scholar 

  157. Jonsdottir, J., Thorsen, R., Aprile, I., Galeri, S., Spannocchi, G., Beghi, E., Bianchi, E., Montesano, A., Ferrarin, M.: Arm rehabilitation in post stroke subjects: a randomized controlled trial on the efficacy of myoelectrically driven FES applied in a task-oriented approach. PLoS One. 12(12), e0188642 (2017). https://doi.org/10.1371/journal.pone.0188642

    Article  Google Scholar 

  158. von Lewinski, F., Hofer, S., Kaus, J., Merboldt, K.-D., Rothkegel, H., Schweizer, R., Liebetanz, D., Frahm, J., Paulus, W.: Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients. Restor. Neurol. Neurosci. 27(3), 189–197 (2009)

    Google Scholar 

  159. Wilkins, K.B., Owen, M., Ingo, C., Carmona, C., Dewald, J.P.A., Yao, J.: Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention. Front. Neurol. 8, 284 (2017). https://doi.org/10.3389/fneur.2017.00284

    Article  Google Scholar 

  160. Nam, C., Rong, W., Li, W., Xie, Y., Hu, X., Zheng, Y.: The effects of upper-limb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke. Front. Neurol. 8, 679 (2017)

    Article  Google Scholar 

  161. Qian, Q., Hu, X., Lai, Q., Ng, S.C., Zheng, Y., Poon, W.: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front. Neurol. 8, 447 (2017)

    Article  Google Scholar 

  162. Qian, Q., Nam, C., Guo, Z., Huang, Y., Hu, X., Ng, S.C., Zheng, Y., Poon, W.: Distal versus proximal – an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J. Neuroeng. Rehabil. 16(1), 64 (2019). https://doi.org/10.1186/s12984-019-0537-5

    Article  Google Scholar 

  163. Rong, W., Li, W., Pang, M., Hu, J., Wei, X., Yang, B., Wai, H., Zheng, X., Hu, X.: A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. Neuroeng. Rehabil. 14(1), 34 (2017). https://doi.org/10.1186/s12984-017-0245-y

    Article  Google Scholar 

  164. McCabe, J.P., Henniger, D., Perkins, J., Skelly, M., Tatsuoka, C., Pundik, S.: Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: a clinical case series report. PLoS One. 14(4), 1–12 (2019). https://doi.org/10.1371/journal.pone.0215311

    Article  Google Scholar 

  165. Hu, X.-L., Tong, R.K., Ho, N.S.K., Xue, J., Rong, W., Li, L.S.W.: Wrist rehabilitation assisted by an electromyography-driven neuromuscular electrical stimulation robot after stroke. Neurorehabil. Neural Repair. 29(8), 767–776 (2015)

    Article  Google Scholar 

  166. Caria, A., Weber, C., Brötz, D., Ramos, A., Ticini, L.F., Gharabaghi, A., Braun, C., Birbaumer, N.: Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology. 48(4), 578–582 (2011)

    Article  Google Scholar 

  167. Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L.L., Lojovich, J.M., Carey, J.R.: Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp. Brain Res. 154(4), 450–460 (2004)

    Article  Google Scholar 

  168. Balasubramanian, S., Garcia, E., Birbaumer, N., Burdet, E., Ramos, A.: Is EMG a viable alternative to BCI for detecting movement intention in severe stroke? I.E.E.E. Trans. Biomed. Eng. 1–9 (2018). https://doi.org/10.1109/TBME.2018.2817688

  169. Dipietro, L., Ferraro, M., Palazzolo, J.J., Krebs, H.I., Volpe, B.T., Hogan, N.: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 325–334 (2005). https://doi.org/10.1109/TNSRE.2005.850423

    Article  Google Scholar 

  170. Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Shiman, F., Spüler, M., Birbaumer, N., Ramos-Murguialday, A.: Design and effectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sci. Rep. 8(1), 16688 (2018). https://doi.org/10.1038/s41598-018-34785-x

    Article  Google Scholar 

  171. Cesqui, B., Tropea, P., Micera, S., Krebs, H.I.: EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study. J. Neuroeng. Rehabil. 10(1), 75 (2013). https://doi.org/10.1186/1743-0003-10-75

    Article  Google Scholar 

  172. Lu, Z., Tong, K., Zhang, X., Li, S., Zhou, P.: Myoelectric pattern recognition for controlling a robotic hand: a feasibility study in stroke. I.E.E.E. Trans. Biomed. Eng. (2018) https://ieeexplore.ieee.org/abstract/document/8365845/

  173. Artemiadis, P.K., Kyriakopoulos, K.J.: A switching regime model for the EMG-based control of a robot arm. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 53–63 (2011). https://doi.org/10.1109/TSMCB.2010.2045120

    Article  Google Scholar 

  174. Liarokapis, M.V., Artemiadis, P.K., Kyriakopoulos, K.J., Manolakos, E.S.: A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models. IEEE J. Biomed. Health Inform. 17(5), 915–921 (2013). https://doi.org/10.1109/JBHI.2013.2259594

    Article  Google Scholar 

  175. Liu, J., Kang, S.H., Xu, D., Ren, Y., Lee, S.J., Zhang, L.-Q.: EMG-based continuous and simultaneous estimation of arm kinematics in able-bodied individuals and stroke survivors. Front. Neurosci. 11, 480 (2017). https://doi.org/10.3389/fnins.2017.00480

    Article  Google Scholar 

  176. Berger, D.J., D’Avella, A.: Effective force control by muscle synergies. Front. Comput. Neurosci. 8, 46 (2014). https://doi.org/10.3389/fncom.2014.00046

    Article  Google Scholar 

  177. Berger, D.J., D’Avella, A.: Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation, pp. 965–969. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46669-9_156

    Book  Google Scholar 

  178. Ghassemi, M., Ranganathan, R., Barry, A., Triandafilou, K., Kamper, D.: Introduction of an EMG-controlled game to facilitate hand rehabilitation after Stroke, pp. 451–455. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46669-9_75

    Book  Google Scholar 

  179. Hahne, J.M., Biessmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F.C., Müller, K.R., Parra, L.C.: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. (2014) https://ieeexplore.ieee.org/abstract/document/6742730/

  180. Ngeo, J.G., Tamei, T., Shibata, T.: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. J. Neuroeng. Rehabil. 11(1), 122 (2014). https://doi.org/10.1186/1743-0003-11-122

    Article  Google Scholar 

  181. Garcia-Cossio, E., Birbaumer, N., Ramos-Murguialday, A.: Facilitation of completely paralyzed forearm muscle activity in chronic stroke patients. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1545–1548 (2013). https://doi.org/10.1109/NER.2013.6696241

    Chapter  Google Scholar 

  182. Irastorza-Landa, N., Sarasola-Sanz, A., Shiman, F., López-Larraz, E., Klein, J., Valencia, D., Belloso, A., Morin, F.O., Birbaumer, N., Ramos-Murguialday, A.: In: Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L. (eds.) EMG Discrete Classification Towards a Myoelectric Control of a Robotic Exoskeleton in Motor Rehabilitation – Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), October 2016, Segovia, Spain, pp. 159–163. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-46669-9_29

    Chapter  Google Scholar 

  183. Sarasola-Sanz, A., Irastorza-Landa, N., Shiman, F., Lopez-Larraz, E., Spuler, M., Birbaumer, N., Ramos-Murguialday, A.: EMG-based multi-joint kinematics decoding for robot-aided rehabilitation therapies. In: IEEE International Conference on Rehabilitation Robotics, 2015-Septe, pp. 229–234 (2015). https://doi.org/10.1109/ICORR.2015.7281204

    Chapter  Google Scholar 

  184. Tenore, F.V.G., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., Thakor, N.V.: Decoding of individuated finger movements using surface electromyography. I.E.E.E. Trans. Biomed. Eng. 56(5), 1427–1434 (2009). https://doi.org/10.1109/TBME.2008.2005485

    Article  Google Scholar 

  185. Ray, A.M., Maillot, A., Helmhold, F., Mahmoud, W.J., López-Larraz, E., Ramos-Murguialday, A.: Electromyographic indices of muscle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor rehabilitation. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 126–129 (2019)

    Chapter  Google Scholar 

  186. Thacham Poyil, A., Steuber, V., Amirabdollahian, F.: Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators. (2020). https://doi.org/10.1371/journal.pone.0233545

  187. Roh, J., Rymer, W.Z., Perreault, E.J., Yoo, S.B., Beer, R.F.: Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109(3), 768–781 (2013). https://doi.org/10.1152/jn.00670.2012

    Article  Google Scholar 

  188. Urra, O., Casals, A., Jané, R.: Synergy analysis as a tool to design and assess an effective stroke rehabilitation. In: Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014, vol. 93, pp. 3550–3553 (2014). https://doi.org/10.1109/EMBC.2014.6944389

    Chapter  Google Scholar 

  189. Cheung, V.C.K., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. 106(46), 19563–19568 (2009). https://doi.org/10.1073/pnas.0910114106

    Article  Google Scholar 

  190. Hong, K., Khan, M.: Hybrid brain – computer interface techniques for improved classification accuracy and increased number of commands: a review. 11(July) (2017). https://doi.org/10.3389/fnbot.2017.00035

  191. Millán, J., Rupp, D.R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Leeb, R., Neuper, C., Mattia, D.: Combining brain – computer interfaces and assistive technologies: state-of-the-art and challenges. 4(September), 1–15 (2010). https://doi.org/10.3389/fnins.2010.00161

  192. Bhagat, N.A., Venkatakrishnan, A., Abibullaev, B., Artz, E.J., Yozbatiran, N., Blank, A.A., French, J., Karmonik, C., Grossman, R.G., O’Malley, M.K., Francisco, G.E., Contreras-Vidal, J.L.: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 10(MAR) (2016). https://doi.org/10.3389/fnins.2016.00122

  193. Carlson, T., Tonin, L., Perdikis, S., Leeb, R., del Millán, J.R.: A hybrid BCI for enhanced control of a telepresence robot. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3097–3100 (2013)

    Chapter  Google Scholar 

  194. Grimm, F., Walter, A., Spüler, M., Naros, G., Rosenstiel, W., Gharabaghi, A.: Hybrid neuroprosthesis for the upper limb: combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10(AUG), 1–11 (2016). https://doi.org/10.3389/fnins.2016.00367

    Article  Google Scholar 

  195. Leeb, R., Sagha, H., Chavarriaga, R., del R Millán, J.: A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2), 25011 (2011)

    Article  Google Scholar 

  196. Li, X., Samuel, O.W., Zhang, X., Wang, H., Fang, P., Li, G.: A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. J. Neuroeng. Rehabil. 14(1), 2 (2017). https://doi.org/10.1186/s12984-016-0212-z

    Article  Google Scholar 

  197. Lin, K., Cinetto, A., Wang, Y., Chen, X., Gao, S., Gao, X.: An online hybrid BCI system based on SSVEP and EMG. J. Neural Eng. 13(2), 26020 (2016)

    Article  Google Scholar 

  198. Riccio, A., Holz, E.M., Aricò, P., Leotta, F., Aloise, F., Desideri, L., Rimondini, M., Kübler, A., Mattia, D., Cincotti, F.: Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Arch. Phys. Med. Rehabil. 96(3), S54–S61 (2015)

    Article  Google Scholar 

  199. Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibian, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid-BMI based on EEG and EMG activity for the motor rehabilitation of stroke patients. In: IEEE International Conference on Rehabilitation Robotics (2017)

    Google Scholar 

  200. Kiguchi, K., Lalitharatne, T.D., Hayashi, Y.: Estimation of forearm supination/pronation motion based on EEG signals to control an artificial arm. J. Adv. Mech. Des. Syst. Manuf. 7(1), 74–81 (2013)

    Article  Google Scholar 

  201. Chowdhury, A., Raza, H., Meena, Y.K., Dutta, A., Prasad, G.: An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation. J. Neurosci. Methods. 312(November), 1–11 (2018). https://doi.org/10.1016/j.jneumeth.2018.11.010

    Article  Google Scholar 

  202. Ramos-Murguialday, A., Khanna, P., Sarasola-sanz, A., Irastorza-Landa, N., Klein, J., Jung, J.H., Garzo, A., Santisteban, L., Chueca, C., Lopez-larraz, E., Ortego-isasa, I., Gowda, S., Dangi, S., Carrasco, A., Diaz, N., Pomposo, I., De Munain, A.L., Birbaumer, N., Mcintyre, J., et al.: A novel implantable hybrid brain-machine-interface (BMI) for motor rehabilitation in stroke patientfor. In: 9th International IEEE/EMBS Conference on Neural Engineering (NER)., 2013, 2019 (2019)

    Google Scholar 

  203. Cheung, V.C.K., Niu, C.M., Li, S., Xie, Q., Lan, N.: A novel FES strategy for Poststroke rehabilitation based on the natural organization of neuromuscular control. February 2019. (2018). https://doi.org/10.1109/RBME.2018.2874132

  204. Rodgers, H., Bosomworth, H., Krebs, H.I., Van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D.L., Dawson, J., Fernandez-garcia, C., Finch, T., Ford, G.A., Francis, R., Hogg, S., Hughes, N., Price, C.I., Ternent, L., et al.: Articles Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 6736(19), 1–12 (2019). https://doi.org/10.1016/S0140-6736(19)31055-4

    Article  Google Scholar 

  205. Ushiba, J., Soekadar, S.: Brain–machine interface rehabilitation in poststroke hemiplegia. Progress in Brain Research, July. (2016). https://doi.org/10.1016/bs.pbr.2016.04.020

  206. Ang, K.K., Guan, C., Chua, K.S.G., Ang, B.T., Kuah, C., Wang, C., Phua, K.S., Zheng Chin, Y., Zhang, H.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, August 2010, pp. 5549–5552 (2010). https://doi.org/10.1109/IEMBS.2010.5626782

    Chapter  Google Scholar 

  207. Vidaurre, C., Blankertz, B.: Towards a cure for BCI illiteracy, 194–198 (2010). https://doi.org/10.1007/s10548-009-0121-6

  208. Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-kabara, E.C., Schwartz, A.B., Moran, D.W., Weber, D.J., Wodlinger, B., Vinjamuri, R.K., Ashmore, R.C., Kelly, J.W., Boninger, M.L.: An electrocorticographic brain Interface in an individual with tetraplegia. 8(2), 1–8 (2013). https://doi.org/10.1371/journal.pone.0055344

  209. Chadwick, E.K., Blana, D., Simeral, J.D., Lambrecht, J., Kim, S.P., Cornwell, A.S., Taylor, M.D., Hochberg, L.R., Donoghue, J.P., Kirsch, R.F.: Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia. 8(3), 1–12 (2013). https://doi.org/10.1088/1741-2560/8/3/034003.Continuous

  210. Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England). 381(9866), 557–564 (2013). https://doi.org/10.1016/S0140-6736(12)61816-9

    Article  Google Scholar 

  211. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., John, D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., Donoghue, J.P., Service, D., Hospital, G.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398), 372–375 (2012). https://doi.org/10.1038/nature11076.Reach

    Article  Google Scholar 

  212. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. August. (2006). https://doi.org/10.1038/nature04970

  213. Ajiboye, A., Willett, F.R., Young, D.R., Memberg, W., Murphy, B., Miller, J.P., Walter, B., Sweet, J., Hoyen, A.H., Keith, M., Peckham, P.H., Simeral, J.D., Donoghue, J., Hochberg, L., Kirsch, F.R.: Restoration of reaching and grasping through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. In: Lancet, vol. 389, London (2017). https://doi.org/10.1016/S0140-6736(17)30601-3

  214. Bouton, C.E., Shaikhouni, A., Nicholas, V., Bockbrader, M.A., Friedenberg, D.A., Mysiw, J., Morgan, A.G., Nielson, D.M., Sharma, G., Sederberg, P.B., Glenn, B.C.: Restoring cortical control of functional movement in a human with quadriplegia. Nature. 1–13 (2016). https://doi.org/10.1038/nature17435

  215. Birbaumer, N.: Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist. 5(2), 74–78 (1999). https://doi.org/10.1177/107385849900500211

  216. Fetz, E.E.: Operant conditioning of cortical unit activity. Science. 163.3870, 955–958 (1969)

    Google Scholar 

  217. Fetz, E.E.: Volitional control of neural activity: implications for brain-computer interfaces. J. Physiol. 579.3, 571–579 (2007)

    Google Scholar 

  218. Bibián, C., Irastorza-Landa, N., Schönauer, M., Birbaumer, N., López-Larraz, E., Ramos-Murguialday A.: On the Extraction of Purely Motor EEG Neural Correlates during an Upper Limb Visuomotor Task, Cerebral Cortex (2021). https://doi.org/10.1093/cercor/bhab479

  219. Irastorza-Landa, N., García-Cossio, E., Sarasola-Sanz, A., Brötz, D., Birbaumer, N., Ramos-Murguialday, A.: Functional synergy recruitment index as a reliable biomarker of motor function and recovery in chronic stroke patients. J. Neural. Eng. 18(4) (2021). https://doi.org/10.1088/1741-2552/abe244. PMID:33530072

  220. Sarasola-Sanz, A., López-Larraz, E., Irastorza-Landa, N., Rossi, G., Figueiredo, T., McIntyre, J., Ramos-Murguialday, A.: Real-time control of a multi-degree-of-freedom mirror myoelectric interface during functional task training. Front. Neurosci. 16, 764936 (2022). https://doi.org/10.3389/fnins.2022.764936

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerea Irastorza-Landa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Irastorza-Landa, N. et al. (2022). Central and Peripheral Neural Interfaces for Control of Upper Limb Actuators for Motor Rehabilitation After Stroke: Technical and Clinical Considerations. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics