Skip to main content

Anthropogenic Emissions Inventories of Air Pollutants

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

An accurate quantification of surface emissions and of their evolution over time is essential to understand and simulate the composition of the atmosphere and its trends. This chapter reviews the current global and regional emission datasets on emissions which are commonly used in the analysis and modeling of atmospheric composition. The species considered in each of these inventories are given together with the different sectors for which emissions are available. General methodologies to derive surface emissions are presented, as well as global inventories used widely by the atmospheric community. Regional emission datasets for Europe, the Americas, Africa, and Asia are also discussed. A large number of references to understand the details in each of these inventories are given, as well as websites where more information can be obtained.

GEIA (Global Emissions InitiAtive) team: Antonin Souliea, Sabine Darrasb, Monica Crippac, Stijn Dellaertd, Hugo Denier van der Gond, Thierno Doumbiaa, Marc Guevarae, Diego Guizzardif, Chris Heyesg, Rachel Hoeslyh, Jukka-Pekka Jalkaneni, Sekou Keitaa, Zbigniew Klimontg, Jeroen Kuenend, Jun-ichi Kurokawaj, Marilena Munteanf, Mauricio Ossesk, Katerina Sindelaroval, Steven Smithh

(a) Laboratoire d’Aerologie, CNRS, University of Toulouse UPS, Toulouse, France; (b) Observatoire Midi-Pyrenees, Toulouse, France; (c) Unisystems S. A., Milano, Italy; (d) Department of Climate, Air and Sustainability, TNO, Utrecht, the Netherland; I Barcelona Supercomputing Center, Barcelona, Spain; (f) European Commission, Joint Research Center (JRC), Ispra, Italy; (g) International Institute for Applied Systems Analysis, IIASA, Laxenburg, Austria; (h) Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA; (i) Finnish Meteorological Institute, Helsinki, Finland; (j) Asia Center for Air Pollution Research, Niigata, Japan; (k) Universidad Tecnica Federico Santa Maria, Santiago, Chile; (15) Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IPCC (2006) Guidelines for National Greenhouse Gas inventories: Volume 1, general guidance and reporting, https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_8_Ch8_Reporting_Guidance.pdf

  2. IPCC (2019) 2019 Refinement to the 2006 IPCC guidelines for National Greenhouse Gas inventories, https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf

  3. Smith SJ, McDuffie EE, Charles M (2022) Opinion: coordinated development of emission inventories for climate forcers and air pollutants. Atmos Chem Phys 22:13201–13218. https://doi.org/10.5194/acp-22-13201-2022

    Article  Google Scholar 

  4. Muntean M, Janssens-Maenhout G, Song S, Selin NE, Olivier JGJ, Guizzardi D, Maas R, Dentener F (2014) Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Sci Total Environ 494–495:337–350. https://doi.org/10.1016/j.scitotenv.2014.06.014

    Article  Google Scholar 

  5. Crippa M, Janssens-Maenhout G, Dentener F, Guizzardi D, Sindelarova K, Muntean M, Van Dingenen R, Granier C (2016) Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos Chem Phys 16:3825–3841. https://doi.org/10.5194/acp-16-3825-2016

    Article  Google Scholar 

  6. Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, van Aardenne JA, Monni S, Doering U, Olivier JGJ, Pagliari V, Janssens-Maenhout G (2018) Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst Sci Data 10:1987–2013. https://doi.org/10.5194/essd-10-1987-2018

    Article  Google Scholar 

  7. Muntean M, Janssens-Maenhout G, Song S, Giang A, Selin NE, Zhong H, Zhao Y, Olivier JGJ, Guizzardi D, Crippa M, Schaaf E, Dentener F (2018) Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns. Atmos Environ 184:56–68. https://doi.org/10.1016/j.atmosenv.2018.04.017

    Article  Google Scholar 

  8. Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Bergamaschi P, Pagliari V, Olivier J, Peters J, van Aardenne J, Monni S, Doering U, Petrescu R, Solazzo E, Oreggioni G (2019) EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth Syst Sci Data 11:959–1002. https://doi.org/10.5194/essd-11-959-2019

    Article  Google Scholar 

  9. Crippa M, Solazzo E, Huang G, Guizzardi D, Koffi E, Muntean M, Schieberle C, Friedrich R, Janssens-Maenhout G (2020) High resolution temporal profiles in the emissions database for Global Atmospheric Research. Nature Scientific Data 7:121. https://doi.org/10.1038/s41597-020-0462-2

    Article  Google Scholar 

  10. Crippa M, Guizzardi D, Pisoni E, Solazzo E, Guion A, Muntean M, Florczyk A, Schiavina M, Melchiorri M, Hutfilter A (2021) Andres, global anthropogenic emissions in urban areas: patterns, trends, and challenges. Environ Res Lett 16. https://doi.org/10.1088/1748-9326/ac00e2

  11. Oreggioni GD, Mahiques O, Monforti-Ferrario F, Schaaf E, Muntean M, Guizzardi D, Vignati E, Crippa M (2022) The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport. Energy Policy 168. https://doi.org/10.1016/j.enpol.2022.113021

  12. Huang G, Brook R, Crippa M, Janssens-Maenhout G, Schieberle C, Dore C, Guizzardi D, Muntean M, Schaaf E, Friedrich R (2017) Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012. Atmos Chem Phys 17:7683–7701. https://doi.org/10.5194/acp-17-7683-2017

    Article  Google Scholar 

  13. Crippa M, Guizzardi D, Butler T, Keating T, Kaminski J, Kuenen J, Kurokawa J, Chatani S, Morikawa T, Pouliot G, Racine J, Moran M, Klimont Z, Wu R, MManseau P, Mashayekhi R, Barron H, Smith S, Muntean M, Solazzo E, Banja M, Schaaf E, Pagani F, Woo J-H, Kim J, Monforti F, Pisoni E, Zhang J, Niemi D, Sassi M (2022) The HTAP_v3 emission mosaic: a global effort to tackle air quality issues, ESSD, in prep.

    Google Scholar 

  14. Janssens-Maenhout G, Crippa M, Guizzardi D, Dentener F, Muntean M, Pouliot G, Keating T, Zhang Q, Kurokawa J, Wankmüller R, Denier van der Gon H, Kuenen JJP, Klimont Z, Frost G, Darras S, Koffi B, Li M (2015) HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos Chem Phys 15:11411–11432. https://doi.org/10.5194/acp-15-11411-2015

    Article  Google Scholar 

  15. IPCC (2021) Climate Change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B. Cambridge University Press, Cambridge, UK/New York, 2391 p. https://doi.org/10.1017/9781009157896

  16. Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM, Bond TC, Dawidowski L, Kholod N, Kurokawa J-I, Li M, Liu L, Lu Z, Moura MCP, O'Rourke PR, Zhang Q (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci Model Dev 11:369–408. https://doi.org/10.5194/gmd-11-369-2018

    Article  Google Scholar 

  17. McDuffie EE, Smith SJ, O'Rourke P, Tibrewal K, Venkataraman C, Marais EA, Zheng B, Crippa M, Brauer M, Martin RV (2020) A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth Syst Sci Data 12:3413–3442. https://doi.org/10.5194/essd-12-3413-2020

    Article  Google Scholar 

  18. BP (2015) BP Statistical Review of World Energy, Available at: https://www.bp.com/statisticalreview

  19. IMO (2014) Reduction of GHG Emissions From Ships: Third IMO GHG Study 2014, MEPC-67-6-INF3-2014

    Google Scholar 

  20. Andres RJ, Fielding DJ, Marland G, Boden TA, Kumar N, Kearney AT (1999) Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus B 51:759–765

    Article  Google Scholar 

  21. Boden T, Marland G, Andres RJ (2016) Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Google Scholar 

  22. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000: historical BC/OC emissions. Global Biogeochem Cy 21:GB002840. https://doi.org/10.1029/2006GB002840

    Article  Google Scholar 

  23. Winijkul E, Fierce L, Bond TC (2016) Emissions from residential combustion considering end-uses and spatial constraints: part I, methods and spatial distribution. Atmos Environ 125:126–139. https://doi.org/10.1016/j.atmosenv.2015.10.013

    Article  Google Scholar 

  24. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039. https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  25. Lee DS, Owen B, Graham A, Fichter C, Lim LL, Dimitriu D (2005) Study on the allocation of emissions from International Aviation to the UK Inventory–CPEG7. Final report to DEFRA Global Atmosphere Division. Allocation of International Aviation Emissions from scheduled air traffic – present day and historical, Centre for Air Transport and the Environment (CATE), Manchester Metropolitan University, Manchester

    Google Scholar 

  26. Granier C, Darras S, Denier van der Gon H, Doubalova J, Elguindi N, Galle B, Gauss M, Guevara M, Jalkanen J-P, Kuenen J, Liousse C, Quack B, Simpson D, Sindelarova K (2019) The Copernicus atmosphere monitoring service global and regional emissions (April 2019 version), Copernicus Atmosphere Monitoring Service (CAMS) report. https://doi.org/10.24380/d0bn-kx16

  27. Soulie A, Granier C, Darras S, Doumbia T, Guevara M, Jalkanen J-P, Keita S, Liousse C (2022) Global anthropogenic emissions (CAMS-GLOB-ANT) for air quality forecasting and reanalyses for the Copernicus Atmosphere Monitoring Service. In: Preparation for Eatch Syst Sci Data

    Google Scholar 

  28. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Nguyen B, Posch M, Rafaj P, Sandler R, Schöpp W, Wagner F, Winiwarter W (2011) Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ Model Softw 26:1489–1501. https://doi.org/10.1016/j.envsoft.2011.07.012

    Article  Google Scholar 

  29. Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, Borken-Kleefeld J, Schöpp W (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17:8681–8723. https://doi.org/10.5194/acp-17-8681-2017

    Article  Google Scholar 

  30. Stohl A, Aamaas B, Amann M, Baker LH, Bellouin N, Berntsen TK, Boucher O, Cherian R, Collins W, Daskalakis N, Dusinska M, Eckhardt S, Fuglestvedt JS, Harju M, Heyes C, Hodnebrog Ø, Hao J, Im U, Kanakidou M, Klimont Z, Kupiainen K, Law KS, Lund MT, Maas R, MacIntosh CR, Myhre G, Myriokefalitakis S, Olivié D, Quaas J, Quennehen B, Raut J-C, Rumbold ST, Samset BH, Schulz M, Seland Ø, Shine KP, Skeie RB, Wang S, Yttri KE, Zhu T (2015) Evaluating the climate and air quality impacts of short-lived pollutants. Atmos Chem Phys 15:10529–10566. https://doi.org/10.5194/acp-15-10529-2015

    Article  Google Scholar 

  31. Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O'Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Crespo Cuaresma J, Samir KC, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Aleluia Da Silva L, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob Environ Chang 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  32. Gomez-Sanabria A, Kiesewetter G, Klimont Z, Schoepp W, Haberl H (2022) Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Comm 13, 106. https://doi.org/10.1038/s41467-021-27624-7

  33. Johansson L, Jalkanen J-P, Kukkonen J (2017) Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos Env 167:403–415. https://doi.org/10.1016/j.atmosenv.2017.08.042

    Article  Google Scholar 

  34. Amann M, Anderl M, Borken-Kleefeld J, Cofala J, Heyes C, Hoglund-Isaksson L, Kiesewetter G, Klimont Z (2018) Progress Towards the Achievement of the EU's Air Quality and Emissions Objectives. International Institute for Applied Systems Analysis (IIASA), Laxenburg. https://pure.iiasa.ac.at/id/eprint/15556/

    Google Scholar 

  35. Hoglund-Isaksson L, Gomez-Sanabria A, Klimont Z, Rafaj P, Schopp W (2020) Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe – results from the GAINS model. Env Res Comm 2:2

    Article  Google Scholar 

  36. Corbett JJ, Fischbeck PS, Pandis SN (1999) Global nitrogen and sulfur inventories for oceangoing ships. J Geophys Res 104:3457–3470. https://doi.org/10.1029/1998JD100040

    Article  Google Scholar 

  37. Endresen O, Sorgard E, Sundet JK, Dalsoren SB, Isaksen ISA, Berglen TF, Gravir G (2003) Emission from international sea transportation and environmental impact. J Geophys Res 108:4560. https://doi.org/10.1029/2002JD002898

    Article  Google Scholar 

  38. Chu-Van T, Ramirez J, Rainey T, Ristovski Z, Brown RJ (2019) Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transp Res 70:123–134. https://doi.org/10.1016/j.trd.2019.04.001

    Article  Google Scholar 

  39. Jalkanen J-P, Johansson L, Kukkonen J (2016) A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmos Chem Phys 16:71–84. https://doi.org/10.5194/acp-16-71-2016

    Article  Google Scholar 

  40. Johansson L, Jalkanen J-P, Kukkonen J (2017) Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos Environ 167:403–415. https://doi.org/10.1016/jj.atmosenv.2017.08.042

    Article  Google Scholar 

  41. Jonson JE, Gauss M, Schulz M, Jalkanen J-P, Fagerli H (2020) Effects of global ship emissions on European air pollution levels. Atmos Chem Phys 20:11399–11422. https://doi.org/10.5194/acp-20-11399-2020

    Article  Google Scholar 

  42. Kramel D, Muri H, Kim Y, Lonka R, Nielsen J, Ringvold A, Bouman E, Steen S, Stromman A (2021) Global shipping emissions from a well-to-wake perspective: the MariTEAM Model. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c03937

  43. Guevara M, Jorba O, Tena C, Denier van der Gon H, Kuenen J, Elguindi N, Darras S, Granier C, Pérez García-Pando C (2021) Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling. Earth Syst Sci Data 13:367–404. https://doi.org/10.5194/essd-13-367-2021

    Article  Google Scholar 

  44. Doumbia T, Granier C, Elguindi N, Bouarar I, Darras S, Brasseur G, Gaubert B, Liu Y, Shi X, Stavrakou T, Tilmes S, Lacey F, Deroubaix A, Wang T (2021) Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling. Earth Syst Sci Data 13:4191–4206. https://doi.org/10.5194/essd-13-4191-2021

    Article  Google Scholar 

  45. Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, Lamboll RD, Le Quéré C, Rogelj J, Rosen D, Schleussner C-F, Richardson TB, Smith CJ, Turnock ST (2020) Current and future global climate impacts resulting from COVID-19. Nat Clim Chang 10:913–919. https://doi.org/10.1038/s41558-020-0883-0

    Article  Google Scholar 

  46. Quadros FDA, Snellen M, Sun J, Dedoussi I (2022) Global Civil Aviation emissions estimates for 2017–2020 using ADS-B data. J Aircraft 3. https://doi.org/10.2514/LC036763

  47. Xu H, Ren Y, Zhang W, Meng W, Yun X, Yu X, Li J, Zhang Y, Shen G, Ma J, Li B, Cheng H, Wang X, Wan Y, Tao S (2021) Updated global black carbon emissions from 1960 to 2017: improvements, trends, and drivers. Environ Sci Tech 55:7869–7879. https://doi.org/10.1021/acs.est.1c03117

    Article  Google Scholar 

  48. European Environment Agency (2016) National Emission reduction Commitments Directive. https://www.eea.europa.eu/themes/air/air-pollution-sources-1/national-emission-ceilings

  49. EMEP/EEA air pollutant emission inventory guidebook 2019, Technical guidance to prepare national emission inventories, EEA report #13/2019. Available at: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019

  50. Wankmüller R (2019) Updated documentation of the EMEP gridding system, Technical report CEIP 6/2019. Available from: https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2019/emep_gridding_system_documentation_20191125.pdf

  51. Kuenen J, Dellaert S, Visschedijk A, Jalkanen J-P, Super I, Denier van der Gon H (2022) CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling. Earth Syst. Sci. Data 14:491–515. https://doi.org/10.5194/essd-14-491-2022

    Article  Google Scholar 

  52. Denier van der Gon HAC, Bergström R, Fountoukis C, Johansson C, Pandis SN, Simpson D, Visschedijk AJH (2015) Particulate emissions from residential wood combustion in Europe - revised estimates and an evaluation. Atmos Chem Physics 15:6503–6519. https://doi.org/10.5194/acp-15-6503-2015

    Article  Google Scholar 

  53. Denier van der Gon H, Kuenen J, Visschedijk A (2020) The TNO CAMS inventories, and alternative (Ref2) emissions for residential wood combustion. In: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2020. The Norwegian Meteorological Institute, Oslo, pp 77–82

    Google Scholar 

  54. Kuenen J, Visschedijk A, Denier van der Gon H (2021) CAMS_81 – deliverable report D81.1.1.5: Documentation Regional emissions for 2018 including REF2 PM split, Copernicus Atmosphere Monitoring Service (CAMS)

    Google Scholar 

  55. Guevara M, Petetin H, Jorba O, Denier van der Gon H, Kuenen J, Super I, Jalkanen J-P, Majamäki E, Johansson L, Peuch V-H, Pérez García-Pando C (2022) European primary emissions of criteria pollutants and greenhouse gases in 2020 modulated by the COVID-19 pandemic disruptions. Earth Syst Sci Data 14:2521–2552. https://doi.org/10.5194/essd-14-2521-2022

    Article  Google Scholar 

  56. McDonald BC, McBride ZC, Martin EW, Harley RA (2014) High-resolution mapping of motor vehicle carbon dioxide emissions. J Geophys Res Atmos 119:5283–5298. https://doi.org/10.1002/2013JD021219

    Article  Google Scholar 

  57. McDonald BC, McKeen SA, Cui YY, Ahmadov R, Kim S-W, Frost GJ, Pollack IB, Peischl J, Ryerson TB, Holloway JS, Graus M, Warneke C, Gilman JB, de Gouw JA, Kaiser J, Keutsch FN, Hanisco TF, Wolfe GM, Trainer M (2018) Modeling ozone in the Eastern U.S. using a fuel-based mobile source emissions inventory. Environ Sci Technol 52(13):7360–7370. https://doi.org/10.1021/acs.est.8b00778

    Article  Google Scholar 

  58. Harkins C, McDonald BC, Henze DK, Wiedinmyer C (2021) A fuel-based method for updating mobile source emissions during the COVID-19 pandemic. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac0660

  59. Alonso MF, Longo KM, Freitas SR, Mello da Fonseca R, Marecal V, Pirre M, Klenner LG (2010) An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmos Environ 44(39):5072–5083. https://doi.org/10.1016/j.atmosenv.2010.09.013

    Article  Google Scholar 

  60. Huneeus N, Denier van der Gon H, Castesana P, Menares C, Granier C, Granier L, Alonso M, Fatima de Andrade M, Dawidowski L, Gallardo L, Gomez D (2020) Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale. Atmos Environ 117606. https://doi.org/10.1016/j.atmosenv.2020.117606

  61. D’Angiola A, Dawidowski L, Gomez D, Osses M (2010) On-road traffic emissions in a megacity. Atmos Environ 44(4):483–493. https://doi.org/10.1016/j.atmosenv.2009.11.004

    Article  Google Scholar 

  62. Rojas NY, Penaloza NE (2012) Desagregacion de inventarios de emisiones. Bogota como caso de estudio. Editorial Academica, Espanola, ISBN: 978-3-659-00796-5

    Google Scholar 

  63. Pachon JE, Galvis B, Lombana O, Carmona LG, Fajardo S, Rincon A, Meneses S, Chaparro R, Nedbor-Gross R, Henderson B (2018) Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogota. Atmos 9:49. https://doi.org/10.3390/atmos9020049

    Article  Google Scholar 

  64. Reategui W, Sanchez-Ccoyllo O, Andrade M, Moya A (2018) PM2.5 estimation withthe WRF/chem model, produced by vehicular flow in the Lima metropolitan area. Open J Air Pollut:215–243. https://doi.org/10.4236/ojap.2018.73011

  65. USACH (2014) Informe final: Actualización y sistematización del inventario de emisionesde contaminantes atmosfericos en la region metropolitana. Universidad de Santiagode Chile (in Spanish)

    Google Scholar 

  66. Gerencia de Qualidade do Ar (GQA) (2016) Inventario, Emissoes de Fontes Veiculares,Regiao Metropolitana do Rio de Janeiro. Ano-Base 2013, Rio de Janeiro. Available at: https://issuu.com/ascomseainea/docs/inea0127611 (in spanish)

  67. Castesana P, Diaz Resquin M, Huneeus N, Puliafito E, Darras S, Gomez D, Granier C, Osses Alvarado M, Rojas N, Dawidowski L (2022) PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information. Earth Syst Sci Data 14:271–293. https://doi.org/10.5194/essd-14-271-2022

    Article  Google Scholar 

  68. Linan-Abanto RN, Salcedo D, Arnott P, Paredes-Miranda G, Grutter M, Peralta O, Carabali G, Serrano-Silva N, Ruiz-Suarez LG, Castro T (2021) Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Clim 37. https://doi.org/10.1016/j.uclim.2021.100855

  69. Andrade MF, Kumar P, Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, Miranda RM, Albuquerque T, Gongalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82. https://doi.org/10.1016/j.atmosenv.2017.03.051

    Article  Google Scholar 

  70. Hoinaski L, Vasques TV, Ribeiro CB, Meotti B (2022) Multispecies and high-spatiotemporal- resolution database of vehicular emissions in Brazil. Earth Syst. Sci. Data 14:2939–2949. https://doi.org/10.5194/essd-14-2939-2022

    Article  Google Scholar 

  71. Gallardo L, Escribano J, Dawidowski L, Rojas N, de Fatima Andrade M, Osses M (2012) Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmos Environ 47:12–19. https://doi.org/10.1016/j.atmosenv.2011.11.051

    Article  Google Scholar 

  72. Alamos N, Huneeus N, Opazo M, Osses M, Puja S, Pantoja N, Denier van der Gon H, Schueftan A, Reyes R, Calvo R (2022) High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile. Earth Syst. Sci. Data 14:361–379. https://doi.org/10.5194/essd-14-361-2022

    Article  Google Scholar 

  73. Osses M, Rojas N, Ibarra C, Valdebenito V, Laengle I, Pantoja N, Osses D, Basoa K, Tolvett S, Huneeus N, Gallardo L, Gomez B (2022) High-definition spatial distribution maps ofon-road transport exhaust emissions in Chile, 1990–2020. Earth Syst. Sci. Data. https://doi.org/10.5194/essd-2021-218

  74. Puliafito SE, Bolaño-Ortiz TR, Fernandez RP, Berná LL, Pascual-Flores RM, Urquiza J, López-Noreña AI, Tames MF (2021) High-resolution seasonal and decadal inventory of anthropogenic gas-phase and particle emissions for Argentina. Earth Syst. Sci. Data 13:5027–5069. https://doi.org/10.5194/essd-13-5027-2021

    Article  Google Scholar 

  75. Castesana PS, Dawidowski LE, Finster L, Gómez DR, Taboada MA (2018) Ammonia emissions from the agriculture sector in Argentina; 2000–2012. Atmos Environ 178:293–304. https://doi.org/10.1016/j.atmosenv.2018.02.003

    Article  Google Scholar 

  76. Ortegon-Sanchez A, Oviedo Hernandez D (2016) Assessment of the potential for modal shift to non-motorised transport in a developing context: Case of Lima, Peru. Res Transp Econ 60:3–13. https://doi.org/10.1016/j.retrec.2016.05.010

    Article  Google Scholar 

  77. Romero Y, Chicchon N, Duarte F, Noel J, Ratti C, Nyhan M (2020) Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Sci Total Environ 698. https://doi.org/10.1016/j.scitotenv.2019.134313

  78. Liousse C, Assamoi E, Criqui P, Granier C, Rosset R (2014) Explosive growth in African combustion emissions from 2005 to 2030. Environ Res Lett 9(3):035003

    Article  Google Scholar 

  79. Keita S, Liousse C, Assamoi E-M, Doumbia T, N'Datchoh ET, Gnamien S, Elguindi N, Granier C, Yoboué V (2021) African anthropogenic emissions inventory for gases and particles from 1990 to 2015. Earth Syst. Sci. Data 13:3691–3705. https://doi.org/10.5194/essd-13-3691-2021

    Article  Google Scholar 

  80. Knippertz P, Coe H, Chiu JC, Evans MJ, Fink AH, Kalthoff N, Liousse C, Mari C, Allan RP, Brooks B, Danour S (2015) The DACCIWA project: Dynamics–aerosol–chemistry-cloud interactions in West Africa. Bull Am Meteorol Soc 96(9):1451–1460

    Article  Google Scholar 

  81. Assamoi E-M, Liousse C (2010) A new inventory for two-wheel vehicle emissions in West Africa for 2002. Atmos Environ 44:3985–3996

    Article  Google Scholar 

  82. Keita S, Liousse C, Yoboué V, Dominutti P, Guinot B, Assamoi E-M, Borbon A, Haslett SL, Bouvier L, Colomb A, Coe H, Akpo A, Adon J, Bahino J, Doumbia M, Djossou J, Galy-Lacaux C, Gardrat E, Gnamien S, Léon JF, Ossohou M, N'Datchoh ET, Roblou L (2018) Particle and VOC emission factor measurements for anthropogenic sources in West Africa. Atmos Chem Phys 18:7691–7708. https://doi.org/10.5194/acp-18-7691-2018

    Article  Google Scholar 

  83. Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072. https://doi.org/10.5194/acp-11-4039-2011

    Article  Google Scholar 

  84. Wiedinmyer C, Yokelson RJ, Gullett BK (2014) Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environ Sci Technol 48:9523–9530. https://doi.org/10.1021/es502250z

    Article  Google Scholar 

  85. Doumbia EHT, Liousse C, Keita S, Granier L, Granier C, Elvidge CD, Elguindi N, Law K (2019) Flaring emissions in Africa: Distribution, evolution and comparison with current inventories. Atmos Environ 199:423–434. https://doi.org/10.1016/j.atmosenv.2018.11.006

    Article  Google Scholar 

  86. Dominutti P, Keita S, Bahino J, Colomb A, Liousse C, Yoboué V, Galy-Lacaux C, Morris E, Bouvier L, Sauvage S, Borbon A (2019) Anthropogenic VOCs in Abidjan, southern West Africa: from source quantification to atmospheric impacts. Atmos Chem Phys 19:11721–11741. https://doi.org/10.5194/acp-19-11721-2019

    Article  Google Scholar 

  87. Bockarie AS, Marais EA, MacKenzie AR (2020) Air Pollution and Climate Forcing of the Charcoal Industry in Africa. Environ Sci Technol 54(21):13429–13438. https://doi.org/10.1021/acs.est.0c03754

    Article  Google Scholar 

  88. Kurokawa J, Ohara T (2020) Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmos Chem Phys 20:12761–12793. https://doi.org/10.5194/acp-20-12761-2020

    Article  Google Scholar 

  89. Kato N, Akimoto H (1992) Anthropogenic emissions of SO2 and NOx in Asia: emissions inventories. Atmos Environ 26:2997–3017. https://doi.org/10.1016/0960-1686(92)90291-R

    Article  Google Scholar 

  90. Akimoto H, Narita H (1994) Distribution of SO2, NOx, and CO2 emissions from fuel combustion and industrial activities in Asia with 1°x1° resolution. Atmos Environ 28:213–225. https://doi.org/10.1016/1352-2310(94)90096-5

    Article  Google Scholar 

  91. Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108:8809. https://doi.org/10.1029/2002JD003093

    Article  Google Scholar 

  92. Streets DG, Yarber KF, Woo J-H, Carmichael GR (2003) Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob Biogeochem Cycles 17:1099. https://doi.org/10.1029/2003GB002040

    Article  Google Scholar 

  93. Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D, Duan L, Lei Y, Wang LT, Yao ZL (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. https://doi.org/10.5194/acp-9-5131-2009

    Article  Google Scholar 

  94. Woo J-H, Kim Y, Kim H-K, Choi K-C, Eum J-H, Lee J-B, Lim J-H, Kim J, Seong M (2020) Development of the CREATE Inventory in Support of Integrated Climate and Air Quality Modeling for Asia. Sustainability 12:7930. https://doi.org/10.3390/su12197930

    Article  Google Scholar 

  95. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444. https://doi.org/10.5194/acp-7-4419-2007

    Article  Google Scholar 

  96. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, Kawashima K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13:11019–11058. https://doi.org/10.5194/acp-13-11019-2013

    Article  Google Scholar 

  97. Li M, Zhang Q, Kurokawa J, Woo J-H, He K, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B (2017) MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys 17:935–963. https://doi.org/10.5194/acp-17-935-2017

    Article  Google Scholar 

  98. Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, Zhang Q, He K (2017) Anthropogenic emission inventories in China: a review. Natl Sci Rev 4:834–866. https://doi.org/10.1093/nsr/nwx150

    Article  Google Scholar 

  99. Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L, Zhang Y, Zhao H, Zheng Y, He K, Zhang Q (2018) Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 18:14095–14111. https://doi.org/10.5194/acp-18-14095-2018

    Article  Google Scholar 

  100. Zhao Y, Zhang J, Nielsen CP (2013) The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmos Chem Phys 13:487–508. https://doi.org/10.5194/acp-13-487-2013

    Article  Google Scholar 

  101. Xia Y, Zhao Y, Nielsen CP (2016) Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000–2014. Atmos. Env. 136:43–53. https://doi.org/10.1016/j.atmosenv.2016.04.013

    Article  Google Scholar 

  102. Sun W, Shao M, Granier C, Liu Y, Ye CS, Zheng JY (2018) Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China. Earth’s Future 6:1112–1133. https://doi.org/10.1029/2018EF000822

    Article  Google Scholar 

  103. Garg A, Shukla PR, Kapshe M (2006) The sectoral trends of multigas emissions inventory of India. Atmos Environ 40:4608–4620. https://doi.org/10.1016/j.atmosenv.2006.03.045

    Article  Google Scholar 

  104. Reddy MS, Venkataraman C (2002) Inventory of aerosol and sulphur dioxide emissions from India: I – fossil fuel combustion. Atmos Environ 36:677–697. https://doi.org/10.1016/S1352-2310(01)00463-0

    Article  Google Scholar 

  105. Reddy MS, Venkataraman C (2002) Inventory of aerosol and sulphur dioxide emissions from India: II – biomass combustion. Atmos Environ 36:699–712. https://doi.org/10.1016/S1352-2310(01)00464-2

    Article  Google Scholar 

  106. Sadavarte P, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos Environ 99:353–364. https://doi.org/10.1016/j.atmosenv.2014.09.081

    Article  Google Scholar 

  107. Pandey A, Sadavarte P, Rao AB, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmos Environ 99:341–352. https://doi.org/10.1016/j.atmosenv.2014.09.080

    Article  Google Scholar 

  108. Venkataraman C, Brauer M, Tibrewal K, Sadavarte P, Ma Q, Cohen A, Chaliyakunnel S, Frostad J, Klimont Z, Martin RV, Millet DB, Philip S, Walker K, Wang S (2018) Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050). Atmos Chem Phys 18:8017–8039. https://doi.org/10.5194/acp-18-8017-2018

    Article  Google Scholar 

  109. Sahu SK, Beig G, Parkhi NS (2012) Emerging pattern of anthropogenic NOx emission over Indian subcontinent during 1990s and 2000s. Atmos Pollut Res 3:262–269. https://doi.org/10.5094/APR.2012.021

    Article  Google Scholar 

  110. Sharma S, Goel A, Gupta D, Kumar A, Mishra A, Kundu S, Chatani S, Klimont Z (2015) Emission inventory of non-methane volatile organic compounds from anthropogenic sources in India. Atmos Environ 102:209–219. https://doi.org/10.1016/j.atmosenv.2014.11.070

    Article  Google Scholar 

  111. Paliwal U, Sharma M, Burkhart JF (2016) Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis. Atmos Chem Phys 16:12457–12476. https://doi.org/10.5194/acp-16-12457-2016

    Article  Google Scholar 

  112. JPEC (Japan Petroleum Energy Center) (2014) Emission inventory of PM2.5 and profiles of emission sources (in Japanese). Report of Ministry of Environment of Japan

    Google Scholar 

  113. Fukui T, Kokuryo K, Baba T, Kannari A (2014) Updating EAGrid2000-Japan emissions inventory based on the recent emission trends (in Japanese). J Jpn Soc Atmos Environ 49:117–125. https://doi.org/10.11298/taiki.49.117

    Article  Google Scholar 

  114. Chatani S, Yamaji K, Sakurai T, Itahashi S, Shimadera H, Kitayama K, Hayami H (2018) Overview of model inter-comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM). Atmos 9:19. https://doi.org/10.3390/atmos9010019

    Article  Google Scholar 

  115. Lee D-G, Lee YM, Jang KW, Yoo C, Kang KH, Lee JH, Jung SW, Park JM, Lee SB, Han JS, Hong JH, Lee SJ (2011) Korean national emissions inventory system and 2007 air pollutant emissions. Asian J Atmos Environ 5:278–291. https://doi.org/10.5572/ajae.2011.5.4.278

    Article  Google Scholar 

  116. Pham TBT, Manomaiphiboon K, Vongmahadlek C (2008) Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand. Sci Total Environ 397:103–118. https://doi.org/10.1016/j.scitotenv.2008.01.066

    Article  Google Scholar 

  117. Permadi DA, Sofyan A, Oanh NTK (2017) Assessment of emissions of greenhouse gases and air pollutants in Indonesia and impacts of national policy for elimination of kerosene use in cooking. Atmos Environ 154:82–94. https://doi.org/10.1016/j.atmosenv.2017.01.041

    Article  Google Scholar 

  118. Sadavarte P, Rupakheti M, Bhave P, Shakya K, Lawrence M (2019) Nepal emission inventory – part I: technologies and combustion sources (NEEMI-Tech) for 2001–2016. Atmos Chem Phys 19:12953–12973. https://doi.org/10.5194/acp-19-12953-2019

    Article  Google Scholar 

  119. Roy S, Lam YF, Hung NT, Chan JCL, Fu JS (2021) Development of 2015 Vietnam emission inventory for power generation units. Atmos Environ 247:118042. https://doi.org/10.1016/j.atmosenv.2020.118042

    Article  Google Scholar 

  120. Tung HD, Tong HY, Hung WT, Anh NTN (2011) Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam. Sci Tot Env 409:2761–2767. https://doi.org/10.1016/j.scitotenv.2011.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Granier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Granier, C., Liousse, C., McDonald, B., Middleton, P. (2023). Anthropogenic Emissions Inventories of Air Pollutants. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_5

Download citation

Publish with us

Policies and ethics