Skip to main content

Functional Rotaxanes

From Synthetic Methodology to Functional Molecular Materials

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Rotaxanes, members of the family of mechanically interlocked molecules, have attracted much attention in the last decades. Remarkable efforts have been put into the development of their syntheses and functionalizations, making rotaxanes a promising class of compounds in versatile materials applications. In this chapter, we discuss the three transition steps in the evolution of rotaxanes, including novel synthetic methodologies, functionalization of rotaxane molecules, and immobilization of rotaxanes into solid-state or polymer substrates working as functional materials. This chapter is expected to promote the evolution of rotaxanes from their synthesis and functionalization in solution toward functional solid-state materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (a) Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348–3391; (b) Sauvage JP, Amendola V (2001) Molecular machines and motors. Springer Science and Business Media; (c) Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400; (d) Kay ER, Leigh DA, Zerbetoo F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72–191; (e) Balzani V, Venturi M, Credi A (2008) Molecular devices and machines. Concepts and perspectives for the nanoworld, 2nd edn, Wiley-VCH, Weinheim; (f) Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550; (g) Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19–30; (h) Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ (2015) Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9:7746–7768; (i) Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL (2015) Artificial molecular machines. Chem Rev 115:10081–10206

    Google Scholar 

  2. (a) Anelli PL, Spencer N, Stoddart JF (1991) A molecular shuttle. J Am Chem Soc 113:5131–5133; (b) Harada A, Li J, Kamachi M (1992) Synthesis of a tubular polymer from threaded cyclodextrins. Nature 356:325–327; (c) Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303:1845–1849; (d) Tian H, Wang QC (2006) Recent progress on switchable rotaxanes. Chem Soc Rev 35:361–374; (e) Serreli V, Lee CF, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523–527; (f) Lee CF, Leigh DA, Pritchard RG, Schultz D, Teat SJ, Timco GA, Winpenny REP (2009) Hybrid organic-inorganic rotaxanes and molecular shuttles. Nature 458:314–318; (g) Ma X, Tian H (2010) Bright functional rotaxanes. Chem Soc Rev 39:70–80; (h) Xue M, Yang Y, Chi X, Yan X, Huang F (2015) Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev 115:7398–7501; (i) Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H (2017) Triggering a [2]rotaxane molecular shuttle by a photochemical bond-cleavage strategy. Org Lett 19:1618–1621; (j) Yang S, Luan ZL, Gao C, Yu JJ, Qu DH (2018) Triggering a [2] rotaxane molecular shuttle through hydrogen sulfide. Sci China Chem 61:1674–7291

    Google Scholar 

  3. (a) Bordoli RJ, Goldup SM (2014) An efficient approach to mechanically planar chiral rotaxanes. J Am Chem Soc 136:4817–4820; (b) Stoddart JF (2014) Putting mechanically interlocked molecules (MIMs) to work in tomorrow’s world. Angew Chem Int Ed 53:11102–11104; (c) van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM (2014) Functional interlocked systems. Chem Soc Rev 43:99–122; (d) Qu DH, Wang QC, Zhang QW, Ma X, Tian H (2015) Photoresponsive host-guest functional systems. Chem Rev 115:7543–7588; (e) Wang W, Chen LJ, Wang XQ, Sun B, Li X, Zhang Y, Shi J, Yu Y, Zhang L, Liu M, Yang HB (2015) Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proc Natl Acad Sci U S A 112:5597–5601

    Google Scholar 

  4. (a) Wang QC, Qu DH, Ren J, Chen K, Tian H (2004) A lockable light-driven molecular shuttle with a fluorescent signal. Angew Chem Int Ed 43:2661–2665; (b) Qu DH, Wang QC, Tian H (2005) A half adder based on a photochemically driven [2] rotaxane. Angew Chem Int Ed 44:5296–5299; (c) Qu DH, Ji FY, Wang QC, Tian H (2006) A double INHIBIT logic gate employing configuration and fluorescence changes. Adv Mater 18:2035–2038; (d) Wenz G, Han BH, Müller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    Google Scholar 

  5. (a) Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96–107; (b) Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621–630; (c) Tuncel D, Özsar Ö, Tiftik HB, Salih B (2007) Chem Commun 1369–1371

    Google Scholar 

  6. (a) Zhang CJ, Li SJ, Zhang JQ, Zhu KL, Li N, Huang F (2007) Benzo-21-crown-7/secondary dialkylammonium salt [2]pseudorotaxane- and [2]rotaxane-type threaded structures. Org Lett 9:5553–5556; (b) Zheng B, Zhang M, Dong S, Liu J, Huang F (2012) A benzo-21-crown-7/secondary ammonium salt [c2]daisy chain. Org Lett 14:306–309; (c) Yan X, Wu X, Wei P, Zhang M, Huang F (2012) A chemical-responsive bis(m-phenylene)-32-crown-10/2,7-diazapyrenium salt [2]pseudorotaxane. Chem Commun 48:8201–8203; (d) Clavel C, Romuald C, Brabet E, Coutrot F (2013) A pH-sensitive lasso-based rotaxane molecular switch. Chem Eur J 19:2982–2989; (e) Ma YX, Meng Z, Chen CF (2014) A novel pentiptycene bis(crown ether)-based [2](2)rotaxane whose two DB24C8 rings act as flapping wings of a butterfly. Org Lett 16:1860–1863; (f) Han Y, Meng Z, Ma YX, Chen CF (2014) Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc Chem Res 47:2026–2040; (g) Meng Z, Cheng CF (2015) A molecular pulley based on a triply interlocked [2] rotaxane. Chem Commun 51:8241–8244

    Google Scholar 

  7. (a) Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F (2011) Formation of linear supramolecular polymers that is driven by C-H … π interactions in solution and in the solid state. Angew Chem Int Ed 50:1397–1401; (b) Ke C, Strutt NL, Li H, Hou X, Hartlieb KJ, McGonigal PR, Ma Z, Iehl J, Stern CL, Cheng C, Zhu Z, Vermeulen NA, Meade TJ, Botros YY, Stoddart JF (2013) Pillar [5] arene as a co-factor in templating rotaxane formation. J Am Chem Soc 135:17019–17030; (c) Dong S, Yuan J, Huang F (2014) A pillar [5] arene/imidazolium [2] rotaxane: solvent-and thermo-driven molecular motions and supramolecular gel formation. Chem Sci 5:247–252

    Google Scholar 

  8. (a) Trabolsi A, Khashab N, Fahrenbach AC, Friedman DC, Colvin MT, Cotí KK, Benitez D, Tkatchouk E, Olsen JC, Belowich ME, Carmielli R, Khatib HA, Goddard WA III, Wasielewski MR, Stoddart JF (2010) Radically enhanced molecular recognition. Nat Chem 2:42–49; (b) Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao Y, Botros YY, Sauvage JP, Stoddart JF (2011) A light-stimulated molecular switch driven by radical–radical interactions in water. Angew Chem Int Ed 50:6782–6788; (c) Li H, Zhu Z, Fahrenbach AC, Savoie BM, Ke C, Barnes JC, Lei J, Zhao Y-L, Lilley LM, Marks TJ, Ratner MA, Stoddart JF (2013) Mechanical bond-induced radical stabilization. J Am Chem Soc 135:456–467; (d) Wang Y, Frasconi M, Liu WG, Sun J, Wu Y, Nassar MS, Botros YY, Goddard WA III, Wasielewski MR, Stoddart JF (2016) Oligorotaxane radicals under orders. ACS Cent Sci 2:89–98

    Google Scholar 

  9. (a) Ahmed R, Altieri A, D’Souza DM, Leigh DA, Mullen KM, Papmeyer M, Slawin AMZ, Wong JKY, Woollins JD (2011) Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation. J Am Chem Soc 133:12304–12310; (b) Altieri A, Aucagne V, Carrillo R, Clarkson GJ, D’Souza DM, Dunnett JA, Leigh DA, Mullen KM (2011) Sulfur-containing amide-based [2] rotaxanes and molecular shuttles. Chem Sci 2:1922–1928; (c) Panman MR, Bakker BH, den Uyl D, Kay ER, Leigh DA, Buma WJ, Brouwer AM, Geenevasen JAJ, Woutersen S (2013) Water lubricates hydrogen-bonded molecular machines. Nat Chem 5:929–934

    Google Scholar 

  10. (a) Ma X, Qu D, Ji F, Wang Q, Zhu L, Xu Y, Tian H (2007) A light-driven [1] rotaxane via self-complementary and Suzuki-coupling capping. Chem Commun 1409–1411; (b) Xue Z, Meyer MF (2010) Actuator prototype: capture and release of a self-entangled [1] rotaxane. J Am Chem Soc 132:3274–3276; (c) Miyawaki A, Kuad P, Takashima Y, Yamaguchi H, Harada A (2008) Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J Am Chem Soc 130:17062–17069; (d) Xia B, Xue M (2014) Design and efficient synthesis of a pillar [5] arene-based [1] rotaxane. Chem Commun 50:1021–1023; (e) Wu X, Ni M, Xia W, Hu X, Wang L (2015) A novel dynamic pseudo [1] rotaxane based on a mono-biotin-functionalized pillar [5] arene. Org Chem Front, 2:1013–1017

    Google Scholar 

  11. (a) FujimotoT, Sakata Y, Kaneda T (2000) The first Janus [2] rotaxane. Chem Commun 2143–2144; (b) Wu J, Leung KCF, Benitez D, Han JY, Cantrill SJ, Fang L, Stoddart JF (2008) An acid–base-controllable [c2] daisy chain. Angew Chem Int Ed 47:7470–7474; (c) Coutrot D, Romuald C, Busseron E (2008) A new pH-switchable dimannosyl [c2] daisy chain molecular machine. Org Lett 10:3741–3744; (d) Clark PG, Day MW, Grubbs RH (2009) Switching and extension of a [c2] daisy-chain dimer polymer. J Am Chem Soc 131:13631–13633; (e) Zhang Z, Han C, Yu G, Huang F (2012) A solvent-driven molecular spring. Chem Sci 3:3026–3031; (f) Rotzler J, Mayor M (2013) Molecular daisy chains. Chem Soc Rev 42:44–62; (g) Bruns CJ, Stoddart JF (2014) Rotaxane-based molecular muscles. Acc Chem Res 47:2186–2199; (h) Bruns CJ, Frasconi M, Iehl J, Hartlieb KJ, Schneebeli ST, Cheng C, Stupp SI, Stoddart JF (2014) Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J Am Chem Soc 136:4714–4723; (i) Gao L, Zhang Z, Zheng B, Huang F, Construction of muscle-like metallo-supramolecular polymers from a pillar [5] arene-based [c 2] daisy chain. Polym Chem 5:5734–5739; (j) Rao SJ, Ye XH, Zhang Q, Gao C, Wang WZ, Qu DH (2018) Light-induced cyclization of a [c2]daisy-chain rotaxane to form a shrinkable double-lasso macrocycle. Asian J Org Chem 7:902–905; (k) Tao RR, Zhang Q, Rao SJ,. Li XLZMM, Qu DH (2018) Supramolecular gelator based on a [c2] daisy chain rotaxane: efficient gel-solution transition by ring-sliding motion. Sci China Chem. https://doi.org/10.1007/s11426-018-9351-3

  12. (a) Zhang ZJ, Zhang HY, Wang H, Liu Y (2011) Angew Chem Int Ed 50:10834–10838; (b) Ke C, Smaldone RA, Kikuchi T, Li H, Davis AP, Stoddart JF (2013) Angew Chem Int Ed 52:381–387; (c) Hou X, Ke C, Cheng C, Song N, Blackburn AK, Sarjeant AA, Botros YY, Yang YW, Stoddart JF (2014) Chem Commun 50:6196–6199; (d) Celtek G, Artar M, Scherman OA, Tuncel D (2009) Chem Eur J 15:10360–10363; (e) Ke C, Smaldone RA, Kikuchi T, Li H, Davis AP, Stoddart JF (2013) Angew Chem Int Ed 52:381–387; (f) Luo QF, Zhu L, Rao SJ, Li H, Miao Q, Qu DH (2015) J Org Chem 8:4704–4709; (g) Wang XQ, Li WJ, Wang W, Yang HB (2018) Chem Commun 54:13303–13318

    Google Scholar 

  13. Fahrenbach AC, Bruns CJ, Li H, Trabolsi A, Coskun A, Stoddart JF (2014) Ground-state kinetics of bistable redox-active donor–acceptor mechanically interlocked molecules. Acc Chem Rev 47:482–493

    Google Scholar 

  14. (a) Deng WQ, Muller RP, Goddard WA (2004) Mechanism of the Stoddart – Heath bistable rotaxane molecular switch. J Am Chem Soc 126:13562–13563; (b) Loeb SJ (2007) Rotaxanes as ligands: from molecules to materials. Chem Soc Rev 36:226–235; (c) Yang W, Li Y, Liu H, Li Y (2012) Design and assembly of rotaxane-based molecular switches and machines. Small 8:504–516

    Google Scholar 

  15. (a) Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR (2001) Switching devices based on interlocked molecules. Acc Chem Res 34:433–444; (b) Katz E, Lioubashevsky O, Willner I (2004) Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J Am Chem Soc 126:15520–15532; (c) Qu DH, Wang QC, Ren J, Tian H (2004) A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org Lett 6:2085–2088; (d) Zhang O, Qu DH, Wang QC, Tian H (2015) Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit [8]uril-enhanced radical cation dimerization interaction. Angew Chem Int Ed 54:15789–15793; (e) Li H, Qu DH (2015) Recent advances in new-type molecular switches. Sci China Chem 58:916–921

    Google Scholar 

  16. (a) Balzani V, Credi A, Venturi M (2008) Molecular machines working on surfaces and at interfaces. ChemPhysChem 9:202–220; (b) Silvi S, Venturi M, Credi A (2009) Artificial molecular shuttles: from concepts to devices. J Mater Chem 19:2279–2294; (c) Pathem BK, Claridge SA, Zheng YB, Weiss PS (2013) Molecular switches and motors on surfaces. Annu Rev Phys Chem 64:605–630; (d) Klajn R, Stoddart JF, Grzybowski BA (2010) Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem Soc Rev 39:2203–2237; (e) Fahrenbach AC, Warren SC, Incorvati JT, Avestro AJ, Barnes JC, Stoddart JF, Grzybowski BA (2013) Organic switches for surfaces and devices. Adv Mater 25:331–348; (f) Yang YW, Sun YL, Song N (2014) Switchable host-guest systems on surfaces. Acc Chem Res 47:1950–1960; (g) Yang H, Yuan B, Zhang X, Scherman OA (2014) Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res 47:2106–2115; (h) Zhang Q, Qu DH (2016) Artificial molecular machine immobilized surfaces: a new platform to construct functional materials. ChemPhysChem. https://doi.org/10.1002/cphc.201501048

  17. (a) Zdobinsky T, Maiti PS, Klajn R (2014) Support curvature and conformational freedom control chemical reactivity of immobilized species. J Am Chem Soc 136:2711–2714; (b) Moldt T, Brete D, Przyrembel D, Das S, Goldman JR, Kundu PK, Gah C, Klajn R, Weinelt M (2015) Tailoring the properties of surface-immobilized azobenzenes by monolayer dilution and surface curvature. Langmuir 31:1048–1057

    Google Scholar 

  18. (a) Berna J, Leigh DA, Lubomska M, Mendoza SM, Pérez EM, Rudolf P, Tepbaldi G, Zerbetto F (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704–710; (b) Liu y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng HR, Jeppesen JO, Huang T, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF (2005) Linear artificial molecular muscles. J Am Chem Soc 127:9745–9759; (c) Cecconello A, Lu CH, Elbaz J, Willner I (2013) Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. Nano Lett 13:6275–6280; (d) Li H, Tan LL, Jia P, Li QL, Sun YL, Zhang J, Ning YQ, Yu J, Yang YW (2014) Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem Sci 5:2804–2808

    Google Scholar 

  19. (a) Olson MA, Coskun A, Klajn R, Fang L, Dey SK, Browne KP, Grzybowski BA, Stoddart JF (2009) Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions. Nano Lett 9:3185–3190; (b) Yao Y, Wang Y, Huang F (2014) Synthesis of various supramolecular hybrid nanostructures based on pillar[6]arene modified gold nanoparticles/nanorods and their application in pH- and NIR-triggered controlled release. Chem Sci 5:4312–4316

    Google Scholar 

  20. Zhu KL, O’Keefe CA, Vukotic VN, Schurko RW, Loeb SJ (2015) A molecular shuttle that operates inside a metal-organic framework. Nat Chem 7:514–519

    Google Scholar 

  21. Song N, Yang YW (2015) Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem Soc Rev 44:3474–3504

    Google Scholar 

  22. (a) Collins CG, Peck EM, Kramer PJ, Smith BD (2013) Squaraine rotaxane shuttle as a ratiometric deep-red optical chloride sensor. Chem Sci 4:2557–2563; (b) Langton MJ, Beer PD (2014) Rotaxane and catenane host structures for sensing charged guest species. Acc Chem Res 47:1935–1949

    Google Scholar 

  23. (a) Wan P, Xing Y, Chen Y, Chi L, Zhang X (2011) Host-guest chemistry at interface for photoswitchable bioelectrocatalysis. Chem Commun 47:5994–5996; (b) Wang PB, Wang YP, Jiang YG, Xu HP, Zhang X (2009) Fabrication of reactivated biointerface for dual-controlled reversible immobilization of cytochrome C. Adv Mater 21:4362–4365

    Google Scholar 

  24. (a) Huang F, Scherman OA (2012) Supramolecular polymers. Chem Soc Rev 41:5879–5880; (b) Yan X, Wang F, Zheng B, Huang FH (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065; (c) Chen H, Ma X, Wu S, Tian H (2014) A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew Chem Int Ed 53:14149–14152

    Google Scholar 

  25. (a) Meyer CD, Joiner CS, Stoddart JF (2007) Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev 36:1705–1723; (b) Wu J, Leung KCF, Stoddart JF (2007) Efficient production of [n]rotaxanes using template-directed clipping reactions. Pro Nat Aca Sci USA 104:17266–17271; (c) Qu DH, Tian H (2011) Novel and efficient templates for assembly of rotaxanes and catenanes. Chem Sci 2:1011–1015

    Google Scholar 

  26. (a) Hänni KD, Leigh DA (2010) The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem Soc Rev 39:1240–1251; (b) Cao ZQ, Wang YC, Zou AH, London G, Zhang Q, Gao C, Qu DH (2017) Reversible switching of a supramolecular morphology driven by an amphiphilic bistable [2]rotaxane. Chem Commun 53:8683–8686; (c) Gao C, Luan ZL, Zhang Q, Rao SJ, Qu DH, Tian H (2017) A braided hetero[2](3)rotaxane. Org Lett 19:3931–3934; (d) Rao SJ, Zhang Q, Ye XH, Gao C, Qu DH (2018) Integrative self-sorting: one-pot synthesis of a hetero[4]rotaxane from a daisy-chain-containing hetero[4]pseudorotaxane. Chem Asian J 13:815–821; (e) Zheng XL, Rong TT, Gu RR, Wang WZ, Qu DH (2018) A switchable [2]rotaxane with two active alkenyl groups. Beilstein J Org Chem 14:2074–2081

    Google Scholar 

  27. Affeld A, Hubner GM, Seel C, Schalley CA (2001) Rotaxane or pseudorotaxane? Effects of small structural variations on the deslipping kinetics of rotaxanes with stopper groups of intermediate size. Eur J Org Chem:2877–2890

    Google Scholar 

  28. (a) Yoon I, Narita M, Shimizu T, Asakawa M (2004) Threading-followed-by-shrinking protocol for the synthesis of a [2] rotaxane incorporating a Pd (II) – salophen moiety. J Am Chem Soc 126:16740–16741; (b) Hsueh SY, Ko JL, Lai CC, Liu YH, Peng SM, Chiu SH (2011) A metal-free “threading-followed-by-shrinking” protocol for rotaxane synthesis. Angew Chem Int Ed 50:6643–6646

    Google Scholar 

  29. Chiu CW, Lai CC, Chiu SH (2007) “Threading-followed-by-swelling”: a new protocol for rotaxane synthesis. J Am Chem Soc 129:3500

    Google Scholar 

  30. (a) Qu DH, Feringa BL (2010) Controlling molecular rotary motion with a self-complexing lock. Angew Chem Int Ed 49:1107–1110; (b) Li H, Zhang H, Zhang Q, Zhang QW, Qu DH (2012) A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org Lett 14:5900–5903; (c) Li H, Zhang J, Zhou W, Zhang H, Zhang Q, Qu DH, Tian H (2013) Dual-mode operation of a bistable [1]rotaxane with a fluorescence signal. Org Lett 15:3070–3073; (d) Clavel C, Romuald C, Brabet E, Coutrot F (2013) A pH-sensitive lasso-based rotaxane molecular switch. Chem Eur J 19:2982–2989; (e) Waelès P, Clavel C, Fournel-Marotte K, Coutrot F (2015) Synthesis of triazolium-based mono-and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8. Chem Sci 6:4828–4836

    Google Scholar 

  31. Li H, Li X, Ågren H, Qu DH (2014) Two switchable star-shaped [1](n)rotaxanes with different multibranched cores. Org Lett 16:4940–4943

    Google Scholar 

  32. (a) Barrell MJ, Campaña AG, von Delius M, Geertsema EM, Leigh DA (2011) Light-driven transport of a molecular walker in either direction along a molecular track. Angew Chem Int Ed 50:285–290; (b) von Delius M, Leigh DA (2011) Walking molecules. Chem Soc Rev 40:3656–3676; (c) Campaña AG, Carlone A, Chen K, Dryden DTF, Leigh DA, Lewandowska U, Mullen KM (2012) A small molecule that walks non-directionally along a track without external intervention. Angew Chem Int Ed 51:5480–5483; (d) Campaña AG, Leigh DA, Lewandowska U (2013) One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J Am Chem Soc 135:8639–8645; (e) Beves JE, Blanco V, Blight BA, Carrillo R, D’Souza DM, Howgego DC, Leigh DA, Slawin AMZ, Symes MD (2014) Toward metal complexes that can directionally walk along tracks: controlled stepping of a molecular biped with a palladium(ii) foot. J Am Chem Soc, 136:2094–2100; (f) Kassem S, Lee ATL, Leigh DA, Markevicius A, Sola J (2016) Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat Chem 8:138–143

    Google Scholar 

  33. Jiménez MC, Dietrich-Buchecker C, Sauvage JP (2000) Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed 39:3284–3287

    Google Scholar 

  34. Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed 50:1905–1909

    Google Scholar 

  35. (a) Fang L, Hmadeh M, Wu J, Olson M, Spruell JM, Trabolsi A, Yang YW, Elhabiri M, Albrecht-Gary AM, Stoddart JF (2009) Acid-base actuation of [c2]daisy chains. J Am Chem Soc 131:7126–7134; (b) Clark P, Day MW, Grubbs RH (2009) Switching and extension of a [c2]daisy-chain dimer polymer. J Am Chem Soc 131:13631–13633; (c) Du G, Moulin E, Jouault N, Buhler E, Giuseppone N (2012) Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew Chem Int Ed 51:12504–12508; (d) Bruns CJ, Stoddart JF (2013) Molecular machines muscle up. Nat Nanotech 8:9–10; (e) Coujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E, Giuseppone N (2016) Hierarchical self-assembly of supramolecular muscle-like fibers. Angew Chem Int Ed 55:703–707; (f) Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H (2016) Phototriggered supramolecular polymerization of a [c2]daisy chain rotaxane. Polym Chem 7:2166–2170; (g) Iwaso K, Takashima Y, Harada A (2016) Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat Chem 8:625–632; (h) Goujon A, Mariani G, Lang T, Moulin E, Rawiso M, Buhler E, Giuseppone N (2017) Controlled sol-gel transitions by actuating molecular machine based supramolecular polymers. J Am Chem Soc 139:4923–4928

    Google Scholar 

  36. Hou X, Ke C, Bruns CJ, McGonigal PR, Pettman RB, Stoddart JF (2015) Tunable solid-state fluorescent materials for supramolecular encryption. Nat Commum 6:6884

    Google Scholar 

  37. (a) Safont-Sempere MM, Fernández G, Würthner F (2011) Self-sorting phenomena in complex supramolecular systems. Chem Rev 111:5784–5814; (b) Račkauskaitė D, Gegevičius R, Matsuo Y, Wärnmark K, Orentas E (2016) An enantiopure hydrogen-bonded octameric tube: self-sorting and guest-induced rearrangement. Angew Chem Int Ed 55:208–212

    Google Scholar 

  38. Jiang W, Winkler HDF, Schalley CA (2008) Integrative self-sorting: construction of a cascade-stoppered hetero[3]rotaxane. J Am Chem Soc 130:13852–13853

    Google Scholar 

  39. (a) Fu X, Zhang Q, Rao SJ, Qu DH, Tian H (2016) One-pot synthesis of a [c2]daisy-chain-containing hetero[4]rotaxane via a self-sorting strategy. Chem Sci 7:1696–1701; (b) Rao SJ, Zhang Q, Mei J, Ye XH, Gao C, Wang QC, Qu DH, Tian H (2017) One-pot synthesis of hetero[6]rotaxane bearing three different kinds of macrocycle through a self-sorting process. Chem Sci 8:6777–6783

    Google Scholar 

  40. Feringa BL (2001) Molecular switches. Wiley-VCH, Weinheim

    Google Scholar 

  41. (a) De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley A, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566; (b) Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460; (c) Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303; (d) Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee JW, Král P, Klajn R (2016) Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat Nanotechnol 11:82–88

    Google Scholar 

  42. van Dijken DJ, Chen J, Stuart MCA, Hou L, Feringa BL (2016) Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc 138:660–669

    Google Scholar 

  43. Colasson B, Credi A, Ragazzon G (2016) Light-driven molecular machines based on ruthenium(II) polypyridine complexes: strategies and recent advances. Coor Chem Rev. https://doi.org/10.1016/j.ccr.2016.02.012

  44. Blanco MJ, Jimenez MC, Chambron JC, Heitz V, Linke M, Sauvage JP (1999) Rotaxanes as new architectures for photoinduced electron transfer and molecular motions. Chem Soc Rev 28:293–305

    Google Scholar 

  45. (a) Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) Effect of the spacer moiety on the rates of electron transfer within bis-porphyrin-stoppered rotaxanes. J Am Chem Soc 115:7419–7425; (b) Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) Ultrafast photoinduced electron transfer between porphyrinic subunits within a bis (porphyrin)-stoppered rotaxane. J Am Chem Soc 115:6109–6114

    Google Scholar 

  46. (a) Zhang H, Kou XX, Zhang Q, Qu DH, Tian H (2011) Altering intercomponent interactions in a photochromic multi-state [2]rotaxane. Org Biomol Chem 9:4051–4056; (b) Zhang H, Hu J, Qu DH (2012) Dual-mode control of PET process in a ferrocene-functionalized [2]rotaxane with high-contrast fluorescence output. Org Lett 14:2334–2337; (c) Zhang H, Liu Q, Qu DH (2013) A novel star-shaped zinc porphyrin cored [5]rotaxane. Org Lett 15:338–341; (d) Zhang H, Zhou B, Li H, Qu DH, Tian H (2013) A ferrocene-functionalized [2]rotaxane with two fluorophores as stoppers. J Org Chem 78:2091–2098; (e) Zhang JN, Li H, Zhou W, Yu SL, Qu DH, Tian H (2013) Fluorescence modulation in tribranched switchable [4]rotaxanes. Chem Eur J 19:17192–17200; (f) Zhang H, Liu Q, Li J, Qu DH (2013) A novel star-shaped zinc porphyrin cored [5]rotaxane. Org Lett 15:338–341; (g) Li H, Li X, Cao ZQ, Qu DH, Ågren H, Tian H (2014) A switchable bis-branched [1]rotaxane featuring dual-mode molecular motions and tunable molecular aggregation. ACS App Mater Interfaces 6:18921–18929; (h) Zhou W, Wu Y, Zhai BQ, Wang QC, Qu DH (2014) An anthracene-containing bistable [2]rotaxane featuring color and fluorescence changes. RSC Adv 4:5148–5151; (i) Liu Y, Zhang Q, Jin WH, Xu TY, Qu DH, Tian H (2018) Bistable [2]rotaxane encoding an orthogonally tunable fluorescent molecular system including white-light emission. Chem Commun 54:10642–10645

    Google Scholar 

  47. (a) Blanco V, Carlone A, Hänni KD, Leigh DA, Lewandowski B (2012) A rotaxane-based switchable organocatalyst. Angew Chem Int Ed 51:5166–5169; (b) Schmittel M, Pramanik S, De S (2012) A reversible nanoswitch as an ON-OFF photocatalyst. Chem Commun 48:11730–11732; (c) De S, Pramanik S, Schmittel M (2014) A toggle nanoswitch alternately controlling two catalytic reactions. Angew Chem Int Ed 53:14255–14259; (d) Blanco V, Leigh DA, Marcos V (2015) Artificial switchable catalysts. Chem Soc Rev 44:5341–5370

    Google Scholar 

  48. (a) Leigh DA, Marcos V, Wilson MR (2014) Rotaxane catalysts. ACS Catal 4:4490–4497; (b) Blanco V, Leigh DA, Lewandowska U, Lewandowski B, Marcos V (2014) Exploring the activation modes of a rotaxane-based switchable organocatalyst. J Am Chem Soc 136:15775–15780; (c) Blanco V, Leigh DA, Marcos V, Morales-Serna JA, Nussbaumer AL (2014) A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J Am Chem Soc 136:4905–4908; (d) Hoekman S, Kitching MO, Leigh DA, Papmeyer M, Roke D (2015) Goldberg active template synthesis of a [2]rotaxane ligand for asymmetric transition-metal catalysis. J Am Chem Soc 137:7656–7659

    Google Scholar 

  49. Qu DH, Tian H (2013) Synthetic small-molecule walkers at work. Chem Sci 4:3031–3035

    Google Scholar 

  50. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Google Scholar 

  51. Lewandowski B, Bo GD, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339:189–193

    Google Scholar 

  52. Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43:65–158

    Google Scholar 

  53. Skou JC (1998) The identification of the sodium-potassium pump (Nobel lecture). Angew Chem Int Ed 37:2320–2328

    Google Scholar 

  54. Boyer PD (1998) Energy, life, and atp (Nobel lecture). Angew Chem Int Ed 37:2296–2307

    Google Scholar 

  55. Bennett I, Farfano HMV, Bogani F, Primak A, Liddell PA, Otero L, Sereno L, Silber JJ, Moore AL, Moore TA, Gust D (2002) Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420:398–401

    Google Scholar 

  56. Ragazzon G, Baroncini M, Silvi S, Venturi M, Credi A (2015) Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat Nanotechnol 10:70–75

    Google Scholar 

  57. (a) Cheng C, McGonigal PR, Schneebeli ST, Li H, Vermeulen NA, Ke C, Stoddart JF (2015) An artificial molecular pump. Nat Nanotechnol 10:547–553; (b) Cheng CY, McGonigal PR, Stoddart JF, Astumian RD (2015) Design and synthesis of nonequilibrium systems. ACS Nano 9:8672–8688

    Google Scholar 

  58. Coskun A, Wesson PJ, Klajn R, Trabolsi A, Fang L, Olson MA, Dey SK, Grzybowski BA, Stoddart JF (2010) Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory. J Am Chem Soc 132:4310–4320

    Google Scholar 

  59. Cao ZQ, Luan ZL, Zhang Q, Gu RR, Ren J, Qu DH (2016) An acid/base responsive side-chain polyrotaxane system with a fluorescent signal. Polym Chem 7:1866–1870

    Google Scholar 

  60. Cao ZQ, Miao Q, Zhang Q, Li H, Qu DH, Tian H (2015) A fluorescent bistable [2] rotaxane molecular switch on SiO2 nanoparticles. Chem Commun 51:4973–4976

    Google Scholar 

  61. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng HR, Jeppesen JO, Huang T, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF (2005) Linear artificial molecular muscles. J Am Chem Soc 127:9745–9759

    Google Scholar 

  62. Zheng YB, Yang YW, Jensen L, Fang L, Juluri BK, Flood AH, Weiss PS, Stoddart JF, Huang TJ (2009) Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9:819–825

    Google Scholar 

  63. Wang P, Jiang Y, Wang Y, Wang Z, Zhang X (2008) Tuning surface wettability through photocontrolled reversible molecular shuttle. Chem Commun:5710–5712

    Google Scholar 

  64. Zhang Q, Rao SJ, Xie T, Li X, Xu TY, Li DW, Qu DH, Long YT, Tian H (2018) Muscle-like artificial molecular actuators for nanoparticles. Chem 4(11):2670–2684

    Google Scholar 

  65. (a) Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174; (b) Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698; (c) Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    Google Scholar 

  66. (a) Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI (2004) An operational supramolecular nanovalve. J Am Chem Soc 126:3370–3371; (b) Nguyen T, Tseng HR, Celestre PC, Flood AH, Liu Y, Stoddart JF, Zink JI (2005) A reversible molecular valve. Pro Nat Acad Sci USA 102:10029–10034; (c) Ferris DP, Zhao YL, Khashab NM, Khatib HA, Stoddart JF, Zink JI (2009) Light-operated mechanized nanoparticles. J Am Chem Soc 131:1686–1688; (d) Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625; (e) Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, Zink JI, Nel AE (2010) Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 132:12690–12697; (f) Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44:903–913

    Google Scholar 

  67. Angelos S, Khashab NM, Yang YW, Trabolsi A, Khatib HA, Stoddart JF, Zink JI (2009) pH clock-operated mechanized nanoparticles. J Am Chem Soc 131:12912–12914

    Google Scholar 

  68. (a) Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430; (b) Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun, 2:511; (c) Roy N, Bruchmann B, Lehn JM (2015) DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev 44:3786–3807; (d) Zheng XL, Miao Q, Wang WZ, Qu DH (2018) Constructing supramolecular polymers from phototrigger containing monomer. Chin Chem Lett 29:1621–1624

    Google Scholar 

  69. Noda Y, Hayashi Y, Ito K (2014) From topological gels to slide-ring materials. J App Polym Sci:131

    Google Scholar 

  70. Chen SJ, Wang YC, Nie T, Bao CY, Wang CX, Xu TY, Lin QN, Qu DH, Gong XQ, Yang Y, Zhu LY, Tian H (2018) An artificial molecular shuttle operates in lipid bilayers for ion transport. J Am Chem Soc 140:17992–17998

    Google Scholar 

  71. Peplow M (2015) The tiniest Lego: a tale of nanoscale motors, rotors, switches and pumps. Nature 525:18–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Hui Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhao, CX., Zhang, Q., London, G., Qu, DH. (2020). Functional Rotaxanes. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_12

Download citation

Publish with us

Policies and ethics