Skip to main content

Impacts of Air Pollutants on Climate Change: Importance of SLCF Co-Control for Climate Change Mitigation in Short- and Long-Term Future

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

This chapter overviews the key mechanisms and magnitudes of anthropogenic air pollution impacts on the earth’s climate system. The impact of the Short-Lived Climate Forcers (SLCFs) is large and comparable to that of the Long-Lived Greenhouse Gases (LLGHGs), but the mechanisms to change temperature and precipitation are different depending on the shortwave and longwave radiative properties and cloud nucleation strength, especially for the rapid climate change process. Among them, Black Carbon (BC) has a very different interaction with the atmosphere resulting in a small change in the global surface mean temperature, but large efficiency of changing precipitation. There are also positive and negative feedbacks among concentrations of different chemical compositions due to involved photochemical reactions. These complex mechanisms of SLCF impacts on climate change compel us to develop an effective scenario for simultaneous mitigation measures of global warming and public health impacts by a well designed-combination of multiple composition reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akimoto H, Kurokawa J, Sudo K et al (2015) SLCP co-control approach in East Asia: tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. Atmos Environ 122:588–595

    Article  Google Scholar 

  2. Bellouin N, Quaas J, Gryspeerdt E et al (2019) Bounding global aerosol radiative forcing of climate change. Rev Geophys 58:e2019RG000660. https://doi.org/10.1029/2019RG000660

    Article  Google Scholar 

  3. Charlson RJ, Schwartz SE, Hales JM et al (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  Google Scholar 

  4. Fläschner D, Mauritsen T, Stevens B (2016) Understanding the intermodel spread in global-mean hydrological sensitivity. J Clim 29:801–817. https://doi.org/10.1175/JCLI-D-15-0351.1

    Article  Google Scholar 

  5. GliĂŸ J, Mortier A, Schulz M et al (2021) AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos Chem Phys 21:87–128. https://doi.org/10.5194/acp-21-87-2021

    Article  Google Scholar 

  6. Golaz J-C, Caldwell PM, Van Roekel LP et al (2019) The DOE E3SM coupled model version 1: overview and evaluation at standard resolution. J Adv Model Earth Syst 11:2089–2129. https://doi.org/10.1029/2018MS001603

    Article  Google Scholar 

  7. Goto D, Sato Y, Yashiro H et al (2020) Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model. Geosci Model Dev 13:3731–3768. https://doi.org/10.5194/gmd-13-3731-2020

    Article  Google Scholar 

  8. Grandey BS, Rothenberg D, Avramov A et al (2018) Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG. Atmos Chem Phys 18:15783–15810. https://doi.org/10.5194/acp-18-15783-2018

    Article  Google Scholar 

  9. Gregory JM, Ingram WJ, Palmer MA et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. https://doi.org/10.1029/2003GL018747

    Article  Google Scholar 

  10. Hanaoka T, Masui T (2018) Co-benefits of short-lived climate pollutants and air pollutants by 2050 while achieving the 2 degree target in Asia. J Sustain Dev Energy Water Environ Syst 6:505–520. https://doi.org/10.13044/j.sdewes.d6.0218

    Article  Google Scholar 

  11. Hanaoka T, Masui T (2020) Exploring effective short-lived climate pollutant mitigation scenarios by considering synergies and trade-offs of combinations of air pollutant measures and low carbon measures towards the level of the 2 °C target in Asia. Environ Pollut 261:113650. https://doi.org/10.1016/j.envpol.2019.113650

    Article  Google Scholar 

  12. Hansen J, Sato M, Ruedy R (1999) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  13. Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. https://doi.org/10.1029/2005JD005776

    Article  Google Scholar 

  14. Hayashi M, Shiogama H, Ogura T et al (2022) Secular change of the sea surface temperature of the Nortwestern Pacific and the anthropogenic global warming. Report of the Integrated Research Program for Advancing Climate Models (TOUGOU), in Japanese

    Google Scholar 

  15. IPCC (2013) In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, 1535 pp

    Google Scholar 

  16. IPCC, Masson-Delmotte V, Zhai P, Pörtner HO et al (eds) (2018) Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, 616 pp. https://doi.org/10.1017/9781009157940

  17. IPCC (2021) In: Shukla PR, Skea J, Slade R et al (eds) Climate change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York. https://doi.org/10.1017/9781009157926

    Chapter  Google Scholar 

  18. Jones A, Roberts DL, Slingo A (1994) A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370:450–453

    Article  Google Scholar 

  19. Koch D, Schulz M, Kinne S et al (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026

    Article  Google Scholar 

  20. Manabe S, Wetherald RT (1967) Thermal equilibruium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  Google Scholar 

  21. Mitchell JFB, Johns TC, Gregory JM et al (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376:501–504

    Article  Google Scholar 

  22. Myhre G, Samset BH, Schulz M et al (2013) Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys 13:1853–1877. https://doi.org/10.5194/acp-13-1853-2013

    Article  Google Scholar 

  23. Nakajima T, Higurashi A, Kawamoto K et al (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28:1171–1174. https://doi.org/10.1029/2000GL012186

    Article  Google Scholar 

  24. Nakajima T, Ohara T, Masui T et al (2020) A development of reduction scenarios of the Short-Lived Climate Pollutants (SLCPs) for mitigating global warming and environmental problems. Prog Earth Planet Sci 7:33. https://doi.org/10.1186/s40645-020-00351-1

    Article  Google Scholar 

  25. Richardson TB, Forster PM, Andrews et al (2018) Drivers of precipitation change: an energetic understanding. J Clim 31:9641–9657. https://doi.org/10.1175/JCLI-D-17-0240.1

    Article  Google Scholar 

  26. Richardson TB, Forster PM, Smith CJ et al (2019) Efficacy of climate forcings in PDRMIP models. J Geophys Res Atmos 124:12,824–12,844. https://doi.org/10.1029/2019JD030581

    Article  Google Scholar 

  27. Samset BH, Myhre G, Forster PM et al (2016) Fast and slow precipitation responses to individual climate forcers: a PDRMIP multimodel study. Geophys Res Lett 43:2782–2791. https://doi.org/10.1002/2016GL068064

    Article  Google Scholar 

  28. Samset BH, Myhre G, Forster PM et al (2018) Weak hydrological sensitivity to temperature change over land, independent of climate forcing. npj Clim Atmos Sci 1:3. https://doi.org/10.1038/s41612-017-0005-5

    Article  Google Scholar 

  29. Sherwood SC, Webb MJ, Annan JD et al (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys 58:e2019RG000678. https://doi.org/10.1029/2019RG000678

    Article  Google Scholar 

  30. Shindell DT, Lamarque JF, Schulz M et al (2013) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys 13:2939–2974

    Article  Google Scholar 

  31. Smith CJ, Kramer RJ, Myhre G et al (2018) Understanding rapid adjustments to diverse forcing agents. Geophys Res Lett 45:12,023–12,031. https://doi.org/10.1029/2018GL079826

    Article  Google Scholar 

  32. Smith CJ, Kramer RJ, Myhre G et al (2020) Effective radiative forcing and adjustments in CMIP6 models. Atmos Chem Phys 20:9591–9618. https://doi.org/10.5194/acp-20-9591-2020

    Article  Google Scholar 

  33. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3,354–3,360

    Article  Google Scholar 

  34. Stjern CW, Samset BH, Myhre G et al (2017) Global and regional radiative forcing from 20% reductions in BC, OC and SO4 – an HTAP2 multi-model study. Atmos Chem Phys 16:13579–13599. https://doi.org/10.5194/acp-16-13579-2016

    Article  Google Scholar 

  35. Stohl A, Aamaas B, Amann M et al (2015) Evaluating the climate and air quality impacts of short-lived pollutants. Atmos Chem Phys 15:10529–10566. https://doi.org/10.5194/acp-15-10529-2015

    Article  Google Scholar 

  36. Sudo K, Akimoto H (2007) Global source attribution of tropospheric ozone: long- range transport from various source regions. J Geophys Res 112. https://doi.org/10.1029/2006JD007992

  37. Suzuki K, Takemura T (2019) Perturbations to global energy budget due to absorbing and scattering aerosols. J Geophys Res Atmos 124:2194–2209. https://doi.org/10.1029/2018JD029808

    Article  Google Scholar 

  38. Suzuki K, Takemura T (2020) Understanding hydrological sensitivities induced by various forcing agents with a climate model. SOLA 16:240–245. https://doi.org/10.2151/sola.2020-040

    Article  Google Scholar 

  39. Takemura T, Suzuki K (2019) Weak global warming mitigation by reducing black carbon emissions. Sci Rep 9:4419. https://doi.org/10.1038/s41598-019-41181-6

    Article  Google Scholar 

  40. Takemura T, Nozawa T, Emori S et al (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport- radiation model. J Geophys Res 110:D02202. https://doi.org/10.1029/2004JD005029

    Article  Google Scholar 

  41. Tatebe H, Ogura T, Nitta T et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12:2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

    Article  Google Scholar 

  42. Thornhill GD, Collins WJ, Kramer RJ et al (2021) Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmos Chem Phys 21:853–874. https://doi.org/10.5194/acp-21-853-2021

    Article  Google Scholar 

  43. UNEP, WMO (2011) Integrated assessment of black carbon and tropospheric ozone: summary for decision makers. UNEP. ISBN: 978-92-807-3142-2

    Google Scholar 

  44. Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  45. Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415

    Article  Google Scholar 

  46. Yoshimori M, Yokohata T, Abe-Ouchi A (2009) A comparison of climate feedback strength between CO2 doubling and LGM experiments. J Clim 22:3374–3395. https://doi.org/10.1175/2009JCLI2801.1

    Article  Google Scholar 

  47. Yoshimori M, Hargreaves JC, Annan JD et al (2011) Dependency of feedbacks on forcing and climate state in physics parameter ensembles. J Clim 24:6440–6455

    Article  Google Scholar 

  48. Zhang K, Zhang W, Wan H et al (2022) Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmos Chem Phys 22:9129–9160. https://doi.org/10.5194/acp-22-9129-2022

    Article  Google Scholar 

Download references

Acknowledgments

Miho Sekiguchi of Tokyo University of Marine Science and Technology and Masakazu Yoshimori of University Tokyo are greatly acknowledged for providing us with radiative forcing results and MIROC climate model results. We acknowledge papers in the reference list for shown results in this article; some of presented values are re-calculated by the authors that may introduce some uncertainties, so that referring to original articles is recommended for detailed discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyuki Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nakajima, T., Takemura, T., Suzuki, K., Goto, D. (2023). Impacts of Air Pollutants on Climate Change: Importance of SLCF Co-Control for Climate Change Mitigation in Short- and Long-Term Future. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics