Skip to main content

Floods and Droughts in Asia, Europe, and America

Abstract

This chapter introduces flood and drought through the understanding of the water cycle. In addition to the water cycle, we consider the energy cycle. The floods and droughts have strong regional and seasonal characteristics. The causes of the unbalanced water conditions can occur under the various meteorological phenomena, which have strong regional and seasonal varieties. For an understanding of the cause of floods and drought, we first consider the geographical characteristics of the floods and droughts. At the same time, we focus on the spatial and temporal time-scale of the flood or drought. Moreover, because floods and drought can be considered as excess and shortage of water, respectively, they are opposite. However, their spatial and temporal scales are asymmetric.

Keywords

  • Climatic zone
  • Seasonal and regional differences
  • Precipitation characteristics
  • Temporal and spatial scales

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Trenberth KE, Smith L, Qian T et al (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769

    CrossRef  Google Scholar 

  2. EM-DAT (2021) Disaster year in review 2020, Cred Crunch, 62, p 1. https://cred.be/sites/default/files/CredCrunch62.pdf. Retrieved on July 8, 2021

  3. Burt CC (2004) Rain and floods. In: Extreme weather. A guide & record book. W W Norton & Co Inc., New York, pp 123–124

    Google Scholar 

  4. National Weather Services (2021) Flash flooding definition. https://www.weather.gov/phi/FlashFloodingDefinition

  5. Papa F, Prigent C, Rossow WB (2007) Ob’ River flood inundations from satellite observations: a relationship with winter snow parameters and river runoff. J Geophys Res 112:D18103. https://doi.org/10.1029/2007JD008451

    CrossRef  Google Scholar 

  6. NOAA (2021) Storm surge overview. https://www.nhc.noaa.gov/surge/. Retrieved on July 9, 2021

  7. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    CrossRef  Google Scholar 

  8. Gunn AM (2008) Yellow river, China, flood 1887 AD. In: Encyclopedia of disasters: environmental catastrophes and human tragedies. Greenwood Press, Santa Barbara, pp 141–145

    Google Scholar 

  9. Coutney C (2018) The nature of disaster in China: the 1931 Yangzi river flood. Cambridge University Press, Cambridge

    Google Scholar 

  10. Kabir MM, Saha BC, Hye JMA (2006) Cyclonic storm surge modelling for design of coastal polder, Institute of Water Modeling. Available at https://web.archive.org/web/20070622000638/http://www.iwmbd.org/html/PUBS/publications/P024.PDF. Retrieved on July 9, 2021

  11. Muscolino MS (2014) The ecology of War in China: Henan Province, the Yellow River, and beyond, Cambridge, UK 1938–1950. Cambridge University Press, Cambridge

    Google Scholar 

  12. Xu Y, Zhang LM, Jia J (2008) Lessons from catastrophic dam failures in August 1975 in Zhumadian, China. In: Krishna RR, Milind VK, Akram NA (eds) GeoCongress 2008: geosustainability and geohazard mitigation, Book series: geotechnical special publication, vol 178. American Society of Civil Engineers, Reston, pp 162–169

    CrossRef  Google Scholar 

  13. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK/New York, pp 109–230

    Google Scholar 

  14. Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161

    CrossRef  Google Scholar 

  15. Palmer WC (1965) Meteorological drought. Report 45. US Weather Bureau, Washington, DC

    Google Scholar 

  16. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65

    CrossRef  Google Scholar 

  17. Schneider U, Fuchs T, Meyer-Christoffer A et al (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 112. https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_v2015.pdf. Retrieved on November 1, 2021

  18. Adler RF, Gu G, Sapiano M et al (2017) Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys 38(4):679–699

    CrossRef  Google Scholar 

  19. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor 77(3):437–472

    CrossRef  Google Scholar 

  20. Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48

    CrossRef  Google Scholar 

  21. Chang DY, Yoon J, Lelieveld J et al (2021) Direct radiative forcing of biomass burning aerosols from the extensive Australian wildfires in 2019–2020. Environ Res Lett 16(4):044041

    CrossRef  Google Scholar 

  22. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633

    CrossRef  Google Scholar 

  23. Kitoh A, Yukimoto S, Noda A et al (1997) Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J Meteorol Soc Jpn Ser II 75(6):1019–1031

    CrossRef  Google Scholar 

  24. Kamizawa N, Takahashi HG (2018) Projected trends in interannual variation in summer seasonal precipitation and its extremes over the tropical Asian Monsoon regions in CMIP5. J Clim 31(20):8421–8439. https://doi.org/10.1175/JCLI-D-17-0685.1

    CrossRef  Google Scholar 

  25. Yamaji M, Takahashi HG (2014) Asymmetrical interannual variation in aerosol optical depth over the tropics in terms of aerosol-cloud interaction. SOLA 10:185–189. https://doi.org/10.2151/sola.2014-039

    CrossRef  Google Scholar 

  26. Xie S-P, Kosaka Y, Du Y et al (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432. https://doi.org/10.1007/s00376-015-5192-6

    CrossRef  Google Scholar 

  27. Takahashi HG, Fujinami H (2021) Recent decadal enhancement of Meiyu–Baiu heavy rainfall over East Asia. Sci Rep 11:13665. https://doi.org/10.1038/s41598-021-93006-0

    CrossRef  Google Scholar 

  28. Takaya Y, Ishikawa I, Kobayashi C et al (2020) Enhanced Meiyu-Baiu rainfall in early summer 2020: aftermath of the 2019 super IOD event. Geophys Res Lett 47(22):e2020GL090671

    CrossRef  Google Scholar 

  29. Wei K, Ouyang C, Duan H et al (2020) Reflections on the catastrophic 2020 Yangtze River basin flooding in Southern China. Innovation 1:100038. https://doi.org/10.1016/j.xinn.2020.100038

    CrossRef  Google Scholar 

  30. Sugimoto S (2020) Heavy precipitation over Southwestern Japan during the Baiu season due to abundant moisture transport from synoptic-scale atmospheric conditions. SOLA 16:17–22. https://doi.org/10.2151/sola.2020-004

    CrossRef  Google Scholar 

  31. Enomoto T, Hoskins BJ, Matsuda Y (2003) The formation mechanism of the Bonin high in August. Q J R Meteorol Soc 129:157–178

    CrossRef  Google Scholar 

  32. Takahashi HG, Fujinami H, Yasunari T et al (2015) Role of tropical cyclones along the monsoon trough in the 2011 Thai flood and interannual variability. J Clim 28(4):1465–1476. https://doi.org/10.1175/JCLI-D-14-00147.1

    CrossRef  Google Scholar 

  33. Seager R, Hoerling M (2014) Atmosphere and ocean origins of North American droughts. J Clim 27(12):4581–4606. https://doi.org/10.1175/JCLI-D-13-00329.1

    CrossRef  Google Scholar 

  34. Schubert SD, Suarez MJ, Pegion PJ et al (2004) Causes of long-term drought in the U.S. great plains. J Clim 17(3):485–503. https://doi.org/10.1175/1520-0442(2004)017%3C0485:COLDIT%3E2.0.CO;2

    CrossRef  Google Scholar 

  35. Williams AP, Seager R, Abatzoglou JT et al (2015) Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett 42:6819–6828. https://doi.org/10.1002/2015GL064924

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi G. Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Takahashi, H.G., Kiguchi, M., Sugimoto, S. (2022). Floods and Droughts in Asia, Europe, and America. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science