Skip to main content

Atmospheric Mixing Ratios of O3 and Radiative Forcing

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change
  • 35 Accesses

Abstract

Ozone in the atmosphere has considerable impacts on the climate system. Changes in ozone in the stratosphere and troposphere cause significant fluctuation in the global radiation budget for both the short-wave and long-wave. Although chemical reaction mechanisms relevant to ozone differ between the stratosphere and troposphere, ozone chemistry is originally driven by photolytic reactions (photolysis) with solar radiation flux for both the stratosphere and troposphere. For the historical period, changes in stratospheric ozone are basically attributed to the increased emissions of ozone depleting species (ODSs) and nitrous oxide (N2O). It is projected that stratospheric circulation (Brewer-Dobson circulation) will be continuously enhanced by the global warming trend expected in the future resulting in a significant impact on the prospective ozone recovery in this century. Ozone increases in the troposphere are attributed to the combination of emission increases for ozone precursors (NOx, CO, and VOCs) and methane. The latest CMIP6 experiments suggest that despite the expected NOx emission decrease, tropospheric ozone will successively increase in this century due to increasing methane concentrations in the future. Future tropospheric ozone will be also affected by climate change as well as anthropogenic emission trends. In particular, increases in ozone transport from the stratosphere under stronger stratospheric circulation induced by warming can cause considerable O3 increases in the troposphere. It can be also expected that increases in some natural emissions like biogenic VOCs due to warming will also play important role in future tropospheric ozone. The net radiative forcing for ozone (as the sum of stratospheric and tropospheric ozone changes) is estimated at 0.35 or 0.39 W m−2 by CMIP6 including a negative radiative forcing of about −0.1 W m−2 due to the stratospheric ozone depletion since the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Stevenson DS et al (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res-Atmos 111:D08301

    Article  Google Scholar 

  2. Yamaji K et al (2006) Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the community multi-scale air quality model: what controls surface ozone levels over Japan? Atmos Environ 40:1856–1868

    Article  Google Scholar 

  3. HTAP UNEP (2010) Hemispheric transport of air pollution 2010: part A: ozone and particulate matter. Air pollution studies no 17 (volume eds: Dentener F, Keating T, Akimoto H). United Nations, New York

    Google Scholar 

  4. Sudo K, Akimoto H (2007) Global source attribution of tropospheric ozone: long-range transport from various source regions. J Geophys Res-Atmos 112:D12302

    Article  Google Scholar 

  5. World Meteorological Organization (WMO) (2018) Scientific assessment of ozone depletion: 2018, global ozone research and monitoring project, vol report no 58. World Meteorological Organization, Geneva

    Google Scholar 

  6. UNEP (2020) Handbook for the Montreal protocol on substances that deplete the ozone layer, 14th edn. UNEP, Nairobi

    Google Scholar 

  7. IPCC (2021) Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  8. Miyazaki K et al (2020) Air quality response in China linked to the 2019 novel coronavirus (COVID-19) lockdown. Geophys Res Lett 47:e2020GL089252

    Article  Google Scholar 

  9. Kumar P et al (2021) The increasing surface ozone and tropospheric ozone in Antarctica and their possible drivers. Environ Sci Technol 55:8542–8553

    Article  Google Scholar 

  10. Tarasick D et al (2019) Tropospheric ozone assessment report: tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anthrop 7:20190101

    Google Scholar 

  11. Ziemke JR et al (2019) Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmos Chem Phys 19:3257–3269

    Article  Google Scholar 

  12. Gaudel A et al (2018) Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anthrop 6:20180101

    Google Scholar 

  13. World Meteorological Organization (WMO), United Nations Environment Programme (2011) Integrated assessment of black carbon and tropospheric ozone. WMO UNEP, Nairobi

    Google Scholar 

  14. Nakajima T et al (2020) A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems. Prog Earth Planet Sc 7:20200727

    Google Scholar 

  15. Marcus TCE, David M, Yaacob M, Salim MR (2013) Salim absorption cross section simulation: a preliminary study of ultraviolet absorption spectroscopy for ozone gas measurement. J Teknol 64:95–98

    Google Scholar 

  16. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes – chlorine atomic-catalysed destruction of ozone. Nature 249:810–812

    Article  Google Scholar 

  17. Chubachi S (1984) Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983, vol Memoirs of the National Institute of Polar Research, Japanese Special Issue, 34

    Google Scholar 

  18. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal Clox/Nox interaction. Nature 315:207–210

    Article  Google Scholar 

  19. Stolarski RS et al (1986) Nimbus-7 satellite measurements of the springtime Antarctic ozone decrease. Nature 322:808–811

    Article  Google Scholar 

  20. Garcia RR, Randel WJ (2008) Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J Atmos Sci 65:2731–2739

    Article  Google Scholar 

  21. Sudo K, Takahashi M, Akimoto H (2003) Future changes in stratosphere-troposphere exchange and their impacts on future tropospheric ozone simulations. Geophys Res Lett 30(24), 2256

    Google Scholar 

  22. Oberlander-Hayn S et al (2016) Is the Brewer-Dobson circulation increasing or moving upward? Geophys Res Lett 43:1772–1779

    Article  Google Scholar 

  23. Banerjee A et al (2016) Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos Chem Phys 16:2727–2746

    Article  Google Scholar 

  24. Turner MC, Jerrett M, Pope CA, Krewski D, Gapstur SM, Diver WR, Beckerman BS, Marshall JD, Su J, Crouse DL, Burnett RT (2015) Long-term ozone exposure and mortality in a large prospective study. Am J Resp Crit Care 193:1134–1142

    Article  Google Scholar 

  25. Jerrett M et al (2009) Long-term ozone exposure and mortality. New Engl J Med 360:1085–1095

    Article  Google Scholar 

  26. Malley CS, Henze DK, Kuylenstierna JC, Vallack HW, Davila Y, Anenberg SC, Turner MC, Ashmore MR (2017) Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure. Environ Health Persp 125:087021

    Article  Google Scholar 

  27. Fowler D et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    Article  Google Scholar 

  28. Stevenson DS et al (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmos Chem Phys 13:3063–3085

    Article  Google Scholar 

  29. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 659–740

    Google Scholar 

  30. Sitch S et al (2007) Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling. Ecol Appl 17:213–234

    Article  Google Scholar 

  31. Voulgarakis A et al (2013) Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos Chem Phys 13:2563–2587

    Article  Google Scholar 

  32. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300

    Article  Google Scholar 

  33. Karset IHH et al (2018) Strong impacts on aerosol indirect effects from historical oxidant changes. Atmos Chem Phys 18:7669–7690

    Article  Google Scholar 

  34. Monks PS et al (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973

    Article  Google Scholar 

  35. Young PJ et al (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the atmospheric chemistry and climate model Intercomparison project (ACCMIP). Atmos Chem Phys 13:2063–2090

    Article  Google Scholar 

  36. Young PJ et al (2018) Tropospheric ozone assessment report: assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elem Sci Anthrop 6:10

    Article  Google Scholar 

  37. Fiore AM et al (2012) Global air quality and climate. Chem Soc Rev 41:6663–6683

    Article  Google Scholar 

  38. Katragkou E et al (2015) Evaluation of near-surface ozone over Europe from the MACC reanalysis. Geosci Model Dev 8:2299–2314

    Article  Google Scholar 

  39. Tilmes S et al (2016) Representation of the community earth system model (CESM1) CAM4-chem within the chemistry-climate model initiative (CCMI). Geosci Model Dev 9:1853–1890

    Article  Google Scholar 

  40. Hu L et al (2017) Global budget of tropospheric ozone: evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations. Atmos Environ 167:323–334

    Article  Google Scholar 

  41. Sauvage B, Martin RV, van Donkelaar A, Ziemke JR (2007) Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum. J Geophys Res Atmos 112, https://doi.org/10.1029/2006JD008008

  42. Ziemke JR, Chandra S, Oman LD, Bhartia PK (2010) A new ENSO index derived from satellite measurements of column ozone. Atmos Chem Phys 10:3711–3721

    Article  Google Scholar 

  43. Akritidis D et al (2016) On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East. Atmos Chem Phys 16:14025–14039

    Article  Google Scholar 

  44. Zanis P et al (2014) Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East. Atmos Chem Phys 14:115–132

    Article  Google Scholar 

  45. Ayers GP et al (1992) Evidence for photochemical control of ozone concentrations in unpolluted marine air. Nature 360:446–449

    Article  Google Scholar 

  46. Archibald AT et al (2020) Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. Elem Sci Anthrop 8:034

    Article  Google Scholar 

  47. Griffiths PT et al (2021) Tropospheric ozone in CMIP6 simulations. Atmos Chem Phys 21:4187–4218

    Article  Google Scholar 

  48. Revell LE et al (2015) Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0. Atmos Chem Phys 15:5887–5902

    Article  Google Scholar 

  49. Fiore AM, Naik V, Leibensperger EM (2015) Air quality and climate connections. J Air Waste Manage Assoc 65:645–685

    Article  Google Scholar 

  50. Meul S, Langematz U, Kroger P, Oberlander-Hayn S, Jockel P (2018) Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery. Atmos Chem Phys 18:7721–7738

    Article  Google Scholar 

  51. Naik V et al (2013) Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the atmospheric chemistry and climate model intercomparison project (ACCMIP). Atmos Chem Phys 13:5277–5298

    Article  Google Scholar 

  52. Sekiya T, Sudo K (2014) Roles of transport and chemistry processes in global ozone change on interannual and multidecadal time scales. J Geophys Res-Atmos 119:4903–4921

    Article  Google Scholar 

  53. Miyazaki K et al (2017) Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos Chem Phys 17:807–837

    Article  Google Scholar 

  54. Sekiya T, Kanaya Y, Sudo K, Taketani F, Iwamoto Y, Aita MN, Yamamoto A, K. (2020) Kawamoto Global bromine- and iodine-mediated tropospheric ozone loss estimated using the CHASER chemical transport model. SOLAIAT 16:220–227

    Article  Google Scholar 

  55. Butchart N (2014) The brewer-Dobson circulation. Rev Geophys 52:157–184

    Article  Google Scholar 

  56. Morgenstern O et al (2018) Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmos Chem Phys 18:1091–1114

    Article  Google Scholar 

  57. Polvani LM, Abalos M, Garcia R, Kinnison D, Randel WJ (2018) Significant weakening of Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal protocol. Geophys Res Lett 45:401–409

    Article  Google Scholar 

  58. Polvani LM et al (2019) Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: a multimodel assessment. J Geophys Res-Atmos 124:6669–6680

    Article  Google Scholar 

  59. Boucher O et al (2013) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds: Stocker TF, et al). Cambridge University Press, Cambridge

    Google Scholar 

  60. Richardson TB et al (2019) Efficacy of climate forcings in PDRMIP models. J Geophys Res Atmos 124:12824–12844

    Article  Google Scholar 

  61. Skeie RB et al (2020) Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Clim Atmos Sci 3:32

    Article  Google Scholar 

  62. Checa-Garcia R, Hegglin MI, Kinnison D, Plummer DA, Shine KP (2018) Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophys Res Lett 45:3264–3273

    Article  Google Scholar 

  63. Patra PK et al (2014) Observational evidence for interhemispheric hydroxyl-radical parity. Nature 513:219–223

    Article  Google Scholar 

  64. Ha PTM, Matsuda R, Kanaya Y, Taketani F, Sudo K (2021) Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry-climate model CHASER V4.0. Geosci Model Dev 14:3813–3841

    Article  Google Scholar 

  65. Cooper OR (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elem Sci Anth 2:29

    Article  Google Scholar 

  66. Pavelin EG, Johnson CE, Rughooputh S, Toumi R (1999) Evaluation of pre-industrial surface ozone measurements made using Schonbein’s method. Atmos Environ 33:919–929

    Article  Google Scholar 

  67. Yeung LY et al (2019) Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature 570:224

    Article  Google Scholar 

  68. Stevenson DS et al (2020) Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmos Chem Phys 20:12905–12920

    Article  Google Scholar 

  69. Weber M et al (2018) Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery. Atmos Chem Phys 18:2097–2117

    Article  Google Scholar 

  70. Dhomse SS et al (2018) Estimates of ozone return dates from chemistry-climate model initiative simulations. Atmos Chem Phys 18:8409–8438

    Article  Google Scholar 

  71. Granier C et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Chang 109:163–190

    Article  Google Scholar 

  72. Georgoulias AK, van der A RJ, Stammes P, Boersma KF, Eskes HJ (2019) Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmos Chem Phys 19:6269–6294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Sudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sudo, K. (2023). Atmospheric Mixing Ratios of O3 and Radiative Forcing. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics