Skip to main content

Ethics of Nanomedicine

  • Living reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

The field of nanomedicine is rapidly growing in both scientific and industrial domains, integrating all aspects of scientific research, pharmaceutical manufacturing, and clinical application. With the approval and application of large numbers of nanomedicines in the past decades, ethical regulation of nanomedicine, on the contrary, is relatively slow to move forward. Indeed, advances in nanomedicine have raised particular ethical challenges in terms of uncertainties in potential risks on human health and environment, compromised integrity of industry-sponsored research, and varied social acceptance on new technology. This chapter discusses these potential ethical issues related to nanomedicine and offers possible measures to eliminate possible risks and avoid unnecessary controversies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. National Nanotechnology Initiative. https://www.nano.gov/about-nanotechnology. Accessed 26 Apr 2022

  2. Bawa R, Audette GF, Reese B (2016) Handbook of clinical nanomedicine: law, business, regulation, safety, and risk. CRC Press

    Book  Google Scholar 

  3. Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance, 2011, pp. 38–40

    Google Scholar 

  4. FDA, Final guidance for industry – considering whether an FDA-regulated product involves the application of nanotechnology, 2014

    Google Scholar 

  5. Hamburg MA (2012) FDA’s approach to regulation of products of nanotechnology. Science 336(6079):299–300

    Article  Google Scholar 

  6. Choi YH, Han H-K (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48(1):43–60

    Article  MathSciNet  Google Scholar 

  7. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C (2020) The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 8(17):4653–4664

    Article  Google Scholar 

  8. Hafner A, Lovrić J, Lakoš GP, Pepić I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005

    Google Scholar 

  9. Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotech Law Bus 5:135

    Google Scholar 

  10. Bawa R (2010) Nanopharmaceuticals: nanopharmaceuticals. Eur J Nanomed 3(1):34–40

    Article  Google Scholar 

  11. FDA, Nanotechnology task force report 2007, 2007

    Google Scholar 

  12. FDA, FDA’s approach to regulation of nanotechnology products. https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products

  13. FDA, draft guidance for industry – drug products, including biological products, that contain nanomaterials, 2017

    Google Scholar 

  14. FDA, Final guidance for industry – liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation, 2018

    Google Scholar 

  15. FDA, Nanotechnology—over a decade of progress and innovation, 2020

    Google Scholar 

  16. Mühlebach S (2018) Regulatory challenges of nanomedicines and their follow-on versions: a generic or similar approach? Adv Drug Deliv Rev 131:122–131

    Article  Google Scholar 

  17. Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313(1):35–56

    Article  Google Scholar 

  18. Schellekens H, Stegemann S, Weinstein V, de Vlieger JS, Flühmann B, Mühlebach S, Gaspar R, Shah VP, Crommelin DJ (2014) How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: points to consider. AAPS J 16(1):15–21

    Article  Google Scholar 

  19. EMC, Multidisciplinary: nanomedicines https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-nanomedicines

  20. Pita R, Ehmann F, Papaluca M (2016) Nanomedicines in the EU—regulatory overview. AAPS J 18(6):1576–1582

    Article  Google Scholar 

  21. Bremer-Hoffmann S, Halamoda-Kenzaoui B, Borgos SE (2018) Identification of regulatory needs for nanomedicines. J Int Nanomed 3(1):4–15

    Google Scholar 

  22. N. Center for Drug Evaluation. https://www.cde.org.cn/main/news/viewInfoCommon/95945bb17a7dcde7b68638525ed38f66

  23. Zingg R, Fischer M (2019) The consolidation of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(6):e1569

    Article  Google Scholar 

  24. Diamond E (2008) Reverse-FOIA limitations on agency actions to disclose human gene therapy clinical trial data. Food Drug Law J 63:321

    Google Scholar 

  25. Ventola CL (2012) The nanomedicine revolution: part 3: regulatory and safety challenges. Pharmacol Therapeut 37(11):631

    Google Scholar 

  26. Bartlett JA, Brewster M, Brown P, Cabral-Lilly D, Cruz CN, David R, Eickhoff WM, Haubenreisser S, Jacobs A, Malinoski F (2015) Summary report of PQRI workshop on nanomaterial in drug products: current experience and management of potential risks. Springer

    Google Scholar 

  27. Agarwal V, Bajpai M, Sharma A (2018) Patented and approval scenario of nanopharmaceuticals with relevancy to biomedical application, manufacturing procedure and safety aspects. Recent Pat Drug Deliv Formul 12(1):40–52

    Article  Google Scholar 

  28. Drlickova M, Smolkova B, Dusinska M (2015) Health hazard of nanoparticles applied in biomedicine. J Nanomed Nanotechnol 6(340):2

    Google Scholar 

  29. Nabi SU, Ali SI, Rather MA, Sheikh WM, Altaf M, Singh H, Mumtaz PT, Mishra NC, Nazir SU, Bashir SM (2022) Organoids: a new approach in toxicity testing of nanotherapeutics. J Appl Toxicol 42(1):52–72

    Article  Google Scholar 

  30. Fabbrizi MR, Duff T, Oliver J, Wilde C (2014) Advanced in vitro systems for efficacy and toxicity testing in nanomedicine. Eur J Nanomed 6(3):171–183

    Article  Google Scholar 

  31. Accomasso L, Cristallini C, Giachino C (2018) Risk assessment and risk minimization in nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol 9:228

    Article  Google Scholar 

  32. Dusinska M, Dusinska M, Fjellsbø L, Magdolenova Z, Rinna A, Runden Pran E, Bartonova A, Heimstad E, Harju M, Tran L (2009) Testing strategies for the safety of nanoparticles used in medical applications. Nanomedicine 4(6):605–607

    Article  Google Scholar 

  33. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17

    Article  Google Scholar 

  34. Mahapatra I, Clark JR, Dobson PJ, Owen R, Lynch I, Lead JR (2018) Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment. Environ Sci Nano 5(8):1873–1889

    Article  Google Scholar 

  35. Resnik DB, Tinkle SS (2007) Ethics in nanomedicine. Nanomedicine (Lond) 2(3):345–350

    Article  Google Scholar 

  36. Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K (2018) Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(5):e1513

    Article  Google Scholar 

  37. World Health Organization (ed) (2007) Quality assurance of pharmaceuticals: a compendium of guidelines and related materials. Volume 2, Good manufacturing practices and inspection, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  38. Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, Durazzo A, Lucarini M, Novellino E, Santini A (2020) Nanopharmaceutics: part i-clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics 12(2)

    Google Scholar 

  39. Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  Google Scholar 

  40. Martins JP, das Neves J, de la Fuente M, Celia C, Florindo H, Gunday-Tureli N, Popat A, Santos JL, Sousa F, Schmid R, Wolfram J, Sarmento B, Santos HA (2020) The solid progress of nanomedicine. Drug Deliv Transl Res 10(3):726–729

    Article  Google Scholar 

  41. Confronting conflict of interest (2018) Nat Med 24(11):1629

    Article  Google Scholar 

  42. Resnik DB (2007) Conflicts of interest in scientific research related to regulation or litigation. J Philos Sci Law 7:1

    Article  Google Scholar 

  43. Adams-Volpe JA (2010) Conflict of interest in medical research, education, and practice. Choice Curr Rev Acad Librar 47(8):1514–1514

    Google Scholar 

  44. Graur F, Elisei R, Szasz A, Neagos HC, Muresan A, Furcea L, Neagoe I, Braicu C, Katona G, Diudea M (2011) Ethical issues in nanomedicine. In: International conference on advancements of medicine and health care through technology. Springer, Berlin, pp 9–12

    Chapter  Google Scholar 

  45. Bottini M, Rosato N, Gloria F, Adanti S, Corradino N, Bergamaschi A, Magrini A (2011) Public optimism towards nanomedicine. Int J Nanomedicine 6:3473–3485

    Article  Google Scholar 

  46. Brossard D, Scheufele DA, Kim E, Lewenstein BV (2008) Religiosity as a perceptual filter: examining processes of opinion formation about nanotechnology. Public Underst Sci 18(5):546–558

    Article  Google Scholar 

  47. Scheufele DA, Corley EA, Shih TJ, Dalrymple KE, Ho SS (2009) Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nat Nanotechnol 4(2):91–94

    Article  Google Scholar 

  48. Arenas N, Ryan K, Subashi E (2007) Social acceptance of nanomedicine. Worcester Polytechnic Institute

    Google Scholar 

  49. Chenel V, Boissy P, Cloarec JP, Patenaude J (2015) Effects of disciplinary cultures of researchers and research trainees on the acceptability of nanocarriers for drug delivery in different contexts of use: a mixed-methods study. J Nanopart Res 17(4):186

    Article  Google Scholar 

  50. Ferrari M, Philibert MA, Sanhai WR (2009) Nanomedicine and society. Clin Pharmacol Ther 85(5):466–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sheng, J., Wu, L., Ding, H., Zhang, Y., Gu, N. (2022). Ethics of Nanomedicine. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics