Abstract
There is a remarkable molecule that can be said to be nature’s atomic trap. This molecule is called an endohedral nitrogen fullerene. Endohedral nitrogen fullerenes (ENFs) and related molecules are the subject of this chapter. Endohedral fullerenes were discovered almost as soon as their empty-cage equivalents. However, ENFs were only available for studies more than a decade after the discovery of fullerenes. A number of endohedral metallofullerenes have been made in significant amounts. However, there are only a handful of ENFs studied to date. ENFs are remarkable for another reason too. Nitrogen is one of the most reactive elements known to science. This is somewhat concealed by the relative inertness of the nitrogen molecule. The nitrogen-nitrogen triple bond is after all one of the strongest bonds in the universe. However atomic nitrogen retains its high reactivity. So how come atomic nitrogen is stable inside a fullerene molecule? Well, it turns out the nitrogen wave function just about “fits snugly” inside the fullerene cage. This chapter describes the different methods of production of ENFs. The properties and chemical functionalization of ENFs are also explored with the aim to summarize progress made towards applications. There is still some way to go before ENFs can be used in real-life applications. This chapter describes what progress has been made and what challenges lay ahead before nature’s atomic traps find their way in commercially available products.
Keywords
- Fullerenes
- Endohedral fullerenes
- ENF
- Functionalization
- Electron spin
- Relaxation times
- Quantum computing
- Atomic clocks
This is a preview of subscription content, access via your institution.






















References
Murphy TA, Pawlik T, Weidinger A, Höhne M, Alcala R, Spaeth JM (1996) Phys Rev Lett 77:1075
Dietel E, Hirsch A, Pietzak B (1999) J Am Chem Soc 121:2432
Waiblinger M, Lips K, Harneit W, Weidinger A, Dietel E, Hirsch A (2001) Phys Rev B 64(15):159901
Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani H, Ito S, Takagi H, Kitazawa K (2002) Chem A Eur J 8(22):5079
Nikawa H, Araki Y, Slanina Z, Tsuchiya T, Akasaka T, Wada T, Ito O, Dinse KP, Ata M, Kato T, Nagase S (2010) Chem Commun 46(4):631
Jakes P, Dinse KP, Meyer C, Harneit W, Weidinger A (2003) Phys Chem Chem Phys 5(19):4080
Kanai M, Porfyrakis K, Briggs GAD, Dennis T (2004) J S Chem Commun 40(2):210
Mauser H, van Eikema Hommes NJR, Clark T, Hirsch A, Pietzak B, Weidinger A, Dunsch L (1997) Angew Chemie Int Ed 36(24):2835
Plakhutin BN, Breslavskaya NN, Gorelik EV, Arbuznikov AV (2005) J Mol Struct THEOCHEM 727(1–3 SPEC. ISS):149
Lu X (2005) Chen, Z. Chem Rev 105(10):3643
Farrington, B. J. Ph.D. thesis, Oxford University, 2013
Zhou, S. Ph.D. thesis, Oxford University, 2017
Pietzak B, Waiblinger M, Murphy TA, Weidinger A, Hohne M, Dietel E, Hirsch. A (1997) Chem Phys Lett 4(November):259
Ito S, Shimotani H, Takagi H, Dragoe N (2008) Fullerenes Nanotub Carbon Nanostruct 16(3):206
Cho SC, Kaneko T, Ishida H, Hatakeyama R, Cho SC, Kaneko T, Ishida H, Hatakeyama R (2015) J Appl Phys 117:123301
Huang H, Ata M, Ramm M (2002) Chem Commun 38(18):2076
Ata M, Huang H, Akasaka T (2004) J Phys Chem B 108:4640
Hawkins JM, Lewis TA, Loren SD, Meyer A, Heath JR, Shibato Y, Saykally RJ (1990) J Org Chem 55(26):6250
Gasper MP, Armstrong DW (1995) J Liq Chromatogr 18(6):1047
Liu X, Zuo T, Dorn H (2017) C J Phys Chem C 121(7):4045
Plant SR, Porfyrakis K (2014) Analyst 139:4519
Wakahara T, Matsunaga Y, Katayama A, Maeda Y, Kako M, Akasaka T, Okamura M, Kato T, Choe Y, Kobayashi K, Nagase S, Huang H, Ata M (2003) Chem Commun 39(23):2940
Harneit W, Huebener K, Naydenov B, Schaefer S, Scheloske M (2007) Phys Status Solidi 244(11):3879
Weidinger A, Waiblinger M, Pietzak B, Murphy TA (1998) Appl Phys A Mater Sci Process 66(3):287
Morton, J. J. L. Ph.D. thesis, Oxford University, 2005
Benjamin SC, Ardavan A (2006) J Phys Condens Matter 18(21):S867
Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon SA, Briggs GAD (2005) J Chem Phys 122(17):174504
Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon SA, Briggws GAD (2006) J Chem Phys 124(1):14508
Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon S a, Briggs GAD (2007) Phys Rev B 76:085418
Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications, 2nd edn. Wiley
Schweiger, Arthur, Jeschke G (2001) Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press
Brown RM (2011) Coherent transfer between electron and nuclear spin qubits and their decoherence properties. Oxford University
Zadrozny JM, Niklas J, Poluektov OG, Freedman DE (2015) ACS Cent. Sci 1(9):488
Knapp C, Dinse KP, Pietzak B, Waiblinger M, Weidinger A (1997) Chem Phys Lett 272(July):433
Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W, Ruben M (2018) Chem Soc Rev 47:501–513
Porfyrakis K, Laird E (2017) A IEEE Spectr 54(12):34
Harding RT, Zhou S, Zhou J, Lindvall T, Myers WK, Ardavan A, Briggs GAD, Porfyrakis K, Laird E (2017) A Phys Rev Lett 119(14):1
Camparo J (2007) Phys Today 60(11):33
Lips K, Waiblinger M, Pietzak B, Weidinger A (2000) Phys Status Solidi 177(1):81
Scheloske M, Naydenov B (2006) Isr J Chem 46:407
Hörmann F, Hirsch A, Porfyrakis K, Briggs GAD (2011) European J. Org Chem 2011(1):117
Diederich F, Isaacs L, Philp D (1994) Chem Soc Rev 23:243
Hörmann F, Hirsch A (2013) Chem A Eur J 19(9):3188
Skiebe A, Hirsch A, Klos H, Gotschy B (1994) Chem Phys Lett 220:138
Franco L, Ceola S, Corvaja C, Bolzonella S, Harneit W, Maggini M (2006) Chem Phys Lett 422(1–3):100
Zhang J, Morton JJL, Sambrook MR, Porfyrakis K, Ardavan A, Briggs G (2006) A D Chem Phys Lett 432(4–6):523
Liu G, Khlobystov AN, Ardavan A, Briggs GAD, Porfyrakis K (2011) Chem Phys Lett 508(4):187
Wakahara T, Kato T, Miyazawa K, Harneit W (2012) Carbon NY 50(4):1709
Goedde B, Waiblinger M, Jakes P, Weiden N, Dinse KP, Weidinger A (2001) Chem Phys Lett 334(February):12
Komatsu K, Wang GW, Murata Y, Tanaka T, Fujiwara K (1998) J Org Chem 63:9358
Zhang J, Porfyrakis K, Sambrook MR, Ardavan A, Briggs G (2006) A D J Phys Chem B 110(34):16979
Jones MAG, Britz DA, Morton JJL, Khlobystov AN, Porfyrakis K, Ardavan A, Briggs G (2006) A D Phys Chem Chem Phys 8(17):2083
Radford HE, Evenson KM (1968) Phys Rev 168(1):70
Naydenov B, Spudat C, Harneit W, Süss HI, Hulliger J, Nuss J, Jansen M (2006) Chem Phys Lett 424(4–6):327
Yang J, Feng P, Sygula A, Harneit W, Su J, Du J (2012) Phys Lett A 376(21):1748
Zhang J, Porfyrakis K, Morton JJL, Sambrook MR, Harmer J, Xiao L, Ardavan A, Briggs G (2008) A D J Phys Chem C 112(8):2802
Samal S, Geckeler KE (2000) Chem Commun 13:1101
Liu Y, Zhao YL, Chen Y, Liang P, Li L (2005) Tetrahedron Lett 46(14):2507
Semenov KN, Charykov NA, Keskinov VN (2011) J Chem Eng Data 56(2):230
Zhang G, Liu Y, Liang D, Gan L, Li Y (2010) Angew Chemie Int Ed 49(31):5293
Liu G, Khlobystov AN, Charalambidis G, Coutsolelos AG, Briggs GAD, Porfyrakis K (2012) J Am Chem Soc 134(4):1938
Zhou S, Yamamoto M, Briggs GAD, Imahori H, Porfyrakis K (2016) J Am Chem Soc 138(4):1313
Deak DS, Porfyrakis K, Castell MR (2007) Chem Commun 43(28):2941
del Gimenez-Lopez MC, Gardener JA, Shaw AQ, Iwasiewicz-Wabnig A, Porfyrakis K, Balmer C, Dantelle G, Hadjipanayi M, Crossley A, Champness NR, Castell MR, Briggs GAD, Khlobystov AN (2010) Phys Chem Chem Phys 12(1):123
Diaconescu B, Yang T, Berber S, Jazdzyk M, Miller G, Tománek D, Pohl K (2009) Phys Rev Lett 102(5):056102
Deak DS, Silly F, Porfyrakis K, Castell MR (2006) J Am Chem Soc 128(43):13976
Silly F, Shaw AQ, Porfyrakis K, Briggs GAD, Castell MR (2007) Appl Phys Lett 91:253109
Wei Y, Reutt-Robey JE (2011) J Am Chem Soc 133(39):15232
Raisanen MT, Slater AG, Champness NR, Buck M (2012) Chem Sci 3(1):84
Simon F, Kuzmany H, Rauf H, Pichler T, Bernardi J, Peterlik H, Korecz L, Fülöp F, Jánossy A (2004) Chem Phys Lett 383(3–4):362
Khlobystov AN, Britz DA, Wang J, O’Neil SA, Poliakoff M, Briggs GAD (2004) J Mater Chem 14(19):2852
Rice WD, Weber RT, Leonard AD, Tour JM, Arepalli S, Berka V, Tsai A, Kono J (2012) ACS Nano 6(3):2165
Plant SR, Jevric M, Morton JJL, Ardavan A, Khlobystov AN, Briggs GAD (2013) Porfyrakis. K Chem Sci 4(7):2971
Farrington BJ, Jevric M, Rance GA, Ardavan A, Khlobystov AN, Briggs GAD (2012) Porfyrakis. K Angew Chemie Int Ed 51(15):3587
Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) J Magn Reson 191:202
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Zhou, S., Porfyrakis, K. (2021). Endohedral Nitrogen Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_30-1
Download citation
DOI: https://doi.org/10.1007/978-981-13-3242-5_30-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-3242-5
Online ISBN: 978-981-13-3242-5
eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science