Skip to main content

Dietary Xanthones

  • Living reference work entry
  • First Online:

Abstract

Xanthones, polyphenolic compounds, are one of the most important classes in natural products, as they exhibit variety of pharmacological and health benefits, i.e., anti-obesity, antidiabetic, antioxidant, anti-Alzheimer, anti-inflammatory, and anticancer. Xanthones can be found in higher plants that are used as food sources, for example, Garcinia mangostana L. (the queen of fruits, mangosteen), a tropical fruit with reddish-purple pericarp that ca. 80% of it consists of xanthones. α-, β-, and γ-Mangostin are the major xanthones present in mangosteen that exhibit potential pharmacological activities. Mangosteen is used as popular food in beverages and in other health products. Also, it is traditionally used as a remedy in treating wounds, inflammation, and bacterial infections. Here in in this chapter, we draw the attention to xanthone compounds present in mangosteen showing their bioactivity and benefits on health, biosynthesis, drug discovery, registered patents, and physicochemical property space.

This is a preview of subscription content, log in via an institution.

References

  • Aboul-Enein AM, El-Ela FA, Shalaby EA, El-Shemy HA (2012) Traditional medicinal plants research in Egypt: studies of antioxidant and anticancer activities. J Med Plant Res 6(5):689–703

    Google Scholar 

  • Astuti R, Marimin M, Arkeman Y, Poerwanto R, Meuwissen MP (2013) Risks and risks mitigations in the supply chain of mangosteen: a case study. Int J Opr Supply Chain Mgmt 6(1):11–25

    Google Scholar 

  • Beerhues L (2011) Biosynthesis of the active Hypericum perforatum constituents. Med Aromat Plant Sci Biotechnol 5:70–77

    Google Scholar 

  • Chae HS, Kim EY, Han L, Kim NR, Lam B, Paik JH, Yoon KD, Choi YH, Chin Y-W (2016) Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L.(Guttiferae). Eur J Lipid Sci Technol 118(9):1416–1421

    Article  CAS  Google Scholar 

  • Chahar MK, Kumar DS, Lokesh T, Manohara KP (2012) In-vivo antioxidant and immunomodulatory activity of mesuol isolated from Mesua ferrea L. seed oil. Int Immunopharmacol 13(4):386–391

    Article  CAS  PubMed  Google Scholar 

  • Chang H-F, Huang W-T, Chen H-J, Yang L-L (2010) Apoptotic effects of γ-mangostin from the fruit hull of Garcinia mangostana on human malignant glioma cells. Molecules 15(12):8953–8966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin Y-W, Kinghorn AD (2008) Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 5(4):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov 5(11):919

    Article  CAS  PubMed  Google Scholar 

  • Coqueiro A, Choi YH, Verpoorte R, Gupta KB, De Mieri M, Hamburger M, Young MC, Stapleton P, Gibbons S, Bolzani V d S (2016) Antistaphylococcal prenylated acylphoroglucinol and xanthones from Kielmeyera variabilis. J Nat Prod 79(3):470–476

    Article  CAS  PubMed  Google Scholar 

  • Davison JR, Bewley CA (2018) Natural products: tapping into personalized chemistry. Nat Chem Biol 14(2):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ee GCL, Mah SH, Rahmani M, Taufiq-Yap YH, Teh SS, Lim YM (2011) A new furanoxanthone from the stem bark of Calophyllum inophyllum. J Asian Nat Prod Res 13(10):956–960

    Article  CAS  PubMed  Google Scholar 

  • El-Awaad I, Bocola M, Beuerle T, Liu B, Beerhues L (2016) Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nat Commun 7:11472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Seedi HR, El-Ghorab DM, El-Barbary MA, Zayed MF, Goransson U, Larsson S, Verpoorte R (2009) Naturally occurring xanthones; latest investigations: isolation, structure elucidation and chemosystematic significance. Curr Med Chem 16(20):2581–2626

    Article  CAS  PubMed  Google Scholar 

  • El-Seedi HR, El-Barbary M, El-Ghorab D, Bohlin L, Borg-Karlson A-K, Goransson U, Verpoorte R (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 17(9):854–901

    Article  CAS  PubMed  Google Scholar 

  • Gales L, Damas A (2005) Xanthones-a structural perspective. Curr Med Chem 12(21):2499–2515

    Article  CAS  PubMed  Google Scholar 

  • Garrity A, Morton G, Morton J (2004) Nutraceutical mangosteen composition. US Patent 6730333 B1 20040504, p 7

    Google Scholar 

  • Gokaraju GR, Gokaraju RR, Golakoti T, Somepalli V, Bhupathiraju K (2013) Process for producing γ-mangostin. Google Patents

    Google Scholar 

  • Gokaraju GR, Gokaraju RR, Golakoti T, Chirravuri VR, Bhupathiraju K (2014) Nutraceutical composition from Garcinia mangostana. Google Patents

    Google Scholar 

  • Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54(6):2077–2082

    Article  CAS  PubMed  Google Scholar 

  • Kang J-J, Fang H-W (1997) Polycyclic aromatic hydrocarbons inhibit the activity of acetylcholinesterase purified from electric eel. Biochem Biophys Res Commun 238(2):367–369

    Article  CAS  PubMed  Google Scholar 

  • Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181

    Article  CAS  Google Scholar 

  • Khurana RK, Gaspar BL, Welsby G, Katare O, Singh KK, Singh B (2018) Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res 8(3):617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-M, Jeong Y-K, Wang M-H, Lee W-Y, Rhee H-I (2005) Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 21(6):756–761

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn AD, H-b C, Sung CK, Keller WJ (2011) The classical drug discovery approach to defining bioactive constituents of botanicals. Fitoterapia 82(1):71–79

    Article  PubMed  Google Scholar 

  • Klundt T, Bocola M, Lütge M, Beuerle T, Liu B, Beerhues L (2009) A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase. J Biol Chem 284:30957. https://doi.org/10.1074/jbc.M109.038927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson J, Gottfries J, Muresan S, Backlund A (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70(5):789–794

    Article  CAS  PubMed  Google Scholar 

  • Li H-L, Li X-M, Liu H, Meng L-H, Wang B-G (2016) Two new diphenylketones and a new xanthone from Talaromyces islandicus EN-501, an endophytic fungus derived from the marine red alga Laurencia okamurai. Mar Drugs 14(12):223

    Article  CAS  PubMed Central  Google Scholar 

  • Liu Q, Li D, Wang A, Dong Z, Yin S, Zhang Q, Ye Y, Li L, Lin L (2016) Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry 131:115–123

    Article  CAS  PubMed  Google Scholar 

  • Moffett A, Shah P (2006) Pharmaceutical and therapeutic compositions derived from Garcinia mangostana L plant. Google Patents

    Google Scholar 

  • Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SR (2017) New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol 198:302–312

    Article  CAS  PubMed  Google Scholar 

  • Niu S-L, Li D-H, Wang Y-T, Wang K-B, Lin B, Jing Y-K, Hua H-M, Bai J, Li Z-L (2017) Neobraclactones A–C, three unprecedented chaise longue-shaped xanthones from Garcinia bracteata. Org Biomol Chem 15(22):4901–4906

    Article  CAS  PubMed  Google Scholar 

  • Nualkaew N, Morita H, Shimokawa Y, Kinjo K, Kushiro T, De-Eknamkul W, Ebizuka Y, Abe I (2012) Benzophenone synthase from Garcinia mangostana L. pericarps. Phytochemistry 77:60–69

    Article  CAS  PubMed  Google Scholar 

  • Ohnemueller UK, Nising CF, Encinas A, Braese S (2007) A versatile access to enantiomerically pure 5-substituted 4-hydroxycyclohex-2-enones: an advanced hemisecalonic acid a model. Synthesis 2007(14):2175–2185

    Article  CAS  Google Scholar 

  • Pan-In P, Wongsomboon A, Kokpol C, Chaichanawongsaroj N, Wanichwecharungruang S (2015) Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 129(4):226–232

    Article  CAS  PubMed  Google Scholar 

  • Patra N, Dehury N, Pal A, Behera A, Patra S (2018) Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticle. Mater Sci Eng C 90:439–445

    Article  CAS  Google Scholar 

  • Phyu MP, Tangpong J (2014) Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment. Food Chem Toxicol 70:151–156

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Granet R, Mbakidi J-P, Bregier F, Pouget C, Micallef L, Sothea-Ouk T, Leger DY, Liagre B, Chaleix V (2016) Delivery of tanshinone IIA and α-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg Med Chem Lett 26(10):2503–2506

    Article  CAS  PubMed  Google Scholar 

  • Rasheed DM, Porzel A, Frolov A, El Seedi HR, Wessjohann LA, Farag MA (2018) Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem 250:236–244

    Article  CAS  PubMed  Google Scholar 

  • Riscoe M, Kelly J, Winter R (2005) Xanthones as antimalarial agents: discovery, mode of action, and optimization. Curr Med Chem 12(21):2539–2549

    Article  CAS  PubMed  Google Scholar 

  • Roleira FM, Varela CL, Costa SC, Tavares-da-Silva EJ (2018) Phenolic derivatives from medicinal herbs and plant extracts: anticancer effects and synthetic approaches to modulate biological activity. Stud Nat Prod Chem 57:115–156

    Article  Google Scholar 

  • Rosén J, Lövgren A, Kogej T, Muresan S, Gottfries J, Backlund A (2009) ChemGPS-NP Web: chemical space navigation online. J Comput Aided Mol Des 23(4):253–259

    Article  CAS  PubMed  Google Scholar 

  • Ryu HW, Cho JK, Curtis-Long MJ, Yuk HJ, Kim YS, Jung S, Kim YS, Lee BW, Park KH (2011) α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. J Phytochemistry 72(17):2148–2154

    Article  CAS  Google Scholar 

  • Sahin H, Nieger M, Nising CF, Bräse S (2009) Functionalization of highly oxygenated xanthones: unexpected stereochemistry and rearrangements. Synlett 2009(19):3187–3191

    Article  CAS  Google Scholar 

  • Santos CM, Freitas M, Fernandes E (2018) A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 157:1460

    Article  CAS  PubMed  Google Scholar 

  • Sarawut Jindarat M (2014) Xanthones from mangosteen (Garcinia mangostana): multi-targeting pharmacological properties. J Med Assoc Thail 97(2):S196–S201

    Google Scholar 

  • Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11(8):666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Sharma T, Kaul S, Kapoor KK, Dhar MK (2017) Anticancer potential of labdane diterpenoid lactone “andrographolide” and its derivatives: a semi-synthetic approach. Phytochem Rev 16(3):513–526

    Article  CAS  Google Scholar 

  • Sousa M, Pinto M (2005) Synthesis of xanthones: an overview. Curr Med Chem 12(21):2447–2479

    Article  CAS  PubMed  Google Scholar 

  • Sukma M, Tohda M, Suksamran S, Tantisira B (2011) γ-Mangostin increases serotonin2A/2C, muscarinic, histamine and bradykinin receptor mRNA expression. J Ethnopharmacol 135(2):450–454

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Gaid M, Kaftan F, Belkheir AK, Belhadj I, Liu B, Svatoš A, Hänsch R, Pasqua G, Beerhues L (2018) Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol 217(3):1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Vieira L, Kijjoa A (2005) Naturally-occurring xanthones: recent developments. Curr Med Chem 12(21):2413–2446

    Article  CAS  PubMed  Google Scholar 

  • Wang J, He W, Huang X, Tian X, Liao S, Yang B, Wang F, Zhou X, Liu Y (2016a) Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. J Agric Food Chem 64(14):2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Wang S-N, Li Q, Jing M-H, Alba E, Yang X-H, Sabaté R, Han Y-F, Pi R-B, Lan W-J, Yang X-B (2016b) Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem Res 41(7):1806–1817

    Article  CAS  PubMed  Google Scholar 

  • Xu W-K, Jiang H, Yang K, Wang Y-Q, Zhang Q, Zuo J (2017) Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin. Kaohsiung J Med Sci 33(3):116–123

    Article  PubMed  Google Scholar 

  • Yang R, Li P, Li N, Zhang Q, Bai X, Wang L, Xiao Y, Sun L, Yang Q, Yan J (2017) Xanthones from the pericarp of Garcinia mangostana. J Mol 22(5):683

    Article  CAS  Google Scholar 

  • Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, Hou L, Kang T, Chen J, Chen HJ (2016) Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release 226:1–14

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tang G, Tang Q, Zhang J, Hou Y, Cai E, Liu S, Lei D, Zhang L, Wang SJ (2016) A method of effectively improved α-mangostin. Eur J Drug Metab Pharmacokinet 41(5):605–613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.R. El-Seedi is very grateful to the Swedish Research links grant 2016-05885 (VR for the years 2017–2019) for the generous financial support and to Jiangsu University, China, and Al-Rayan Colleges, Medina, Saudi Arabia, for Adjunct and Consultant Professor Fellowships, respectively; Mohamed A. Farag acknowledges the funding received from the Alexander von Humboldt Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hesham R. El-Seedi or Mohamed A. Farag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El-Seedi, H.R. et al. (2020). Dietary Xanthones. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics