Skip to main content

Three-Dimensional Fabrication of Micro-/Nanostructure Using Scanning Probe Lithography

  • Reference work entry
  • First Online:
Book cover Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT))

  • 2260 Accesses

Abstract

As one of the tip-based nanofabrication approaches, the atomic force microscope (AFM) tip-based nanomechanical machining method has been successfully utilized to fabricate three-dimensional (3D) nanostructure. First, the principle of AFM tip-based mechanical nanomachining is introduced, which includes contact and tapping modes. Second, fabrication of 3D nanostructure by material removal is presented. This part contains force- and feed-control approaches. Third, ripple-type nanostructure machined with stick-slip process is described. This method is usually implemented on the polymer materials. Finally, a novel machining method combining the material pileup and the machined groove to form a 3D nanostructure is presented. It is expected that this chapter will serve to aid in the advance of the fabrication of 3D nanostructure and expand its applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aoike T, Uehara H, Yamanobe T et al (2001) Comparison of macro- and nanotribological behavior with surface plastic deformation of polystyrene. Langmuir 17(7):2153–2159

    Article  Google Scholar 

  • Barton RA, Ilic B, Verbridge SS et al (2010) Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett 10:2058–2063

    Article  Google Scholar 

  • Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  • Binning G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  • Bowden FP, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Brousseau EB, Arnal B, Thiery S, et al (2013) Towards CNC automation in AFM probe-based nano machining. In: International conference on micromanufacture, Victoria, p 95

    Google Scholar 

  • Chen J, Workman RK, Sarid D et al (1994) Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever. Nanotechnology 5(4):199–204

    Article  Google Scholar 

  • D’Acunto M, Napolitano S, Pingue P et al (2007) Fast formation of ripples induced by AFM: a new method for patterning polymers on nanoscale. Mater Lett 61:3305–3309

    Article  Google Scholar 

  • Dagata JA (1995) Device fabrication by scanned probe oxidation. Science 270(5242):1625–1626

    Article  Google Scholar 

  • Dinelli F, Leggett GJ, Shipway PH (2005) Nanowear of polystyrene surfaces: molecular entanglement and bundle formation. Nanotechnology 16(6):675–682

    Article  Google Scholar 

  • Dregely D, Neubrech F, Duan H et al (2013) Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat Commun 4:2237

    Article  Google Scholar 

  • Duan C, Alibakhshi MA, Kim DK et al (2016) Label-free electrical detection of enzymatic reactions in nanochannels. ACS Nano 10:7476–7484

    Article  Google Scholar 

  • Elkaakour Z, Aime JP, Bouhacina T et al (1994) Bundle formation of polymers with an atomic-force microscope in contact mode-a friction versus peeling process. Phys Rev Lett 73(24):3231

    Article  Google Scholar 

  • Geng Y, Yan Y, Zhao X et al (2013a) Fabrication of millimeter scale nanochannels using the AFM tip-based nanomachining method. Appl Surf Sci 266:386–394

    Article  Google Scholar 

  • Geng YQ, Yan YD, Xing YM et al (2013b) Modelling and experimental study of machined depth in AFM-based milling of nanochannels. Int J Mach Tools Manuf 73:87–96

    Article  Google Scholar 

  • Geng Y, Yan Y, Yu Y et al (2014) Depth prediction model of nanogrooves fabricated by AFM-based multi-pass scratching method. Appl Surf Sci 313:615–623

    Article  Google Scholar 

  • Geng Y, Yan Y, Hu Z et al (2016a) Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method. Meas Sci Technol 27:015001

    Article  Google Scholar 

  • Geng Y, Yan Y, Brousseau E et al (2016b) Processing outcomes of the AFM probe-based machining approach with different feed directions. Precis Eng 46:288–300

    Article  Google Scholar 

  • Geng Y, Yan Y, Brousseau E et al (2016c) Machining complex three-dimensional nanostructures with an atomic force microscope through the frequency control of the tip reciprocating motions. J Manuf Sci Eng 138:124501

    Article  Google Scholar 

  • Geng Y, Yan Y, Brousseau E et al (2017a) AFM tip-based mechanical nanomachining of 3D micro and nano-structures via the control of the scratching trajectory. J Mater Process Technol 248:236–248

    Article  Google Scholar 

  • Geng Y, Wang Y, Yan Y et al (2017b) A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball. Rev Sci Instrum 88(11):115109

    Article  Google Scholar 

  • He Y, Yan Y, Geng Y et al (2018) Fabrication of periodic nanostructures using dynamic plowing lithography with the tip of an atomic force microscope. Appl Surf Sci 427:1076–1083

    Article  Google Scholar 

  • Heyde M, Rademann K, Cappella B et al (2001) Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope. Rev Sci Instrum 72:136–141

    Article  Google Scholar 

  • Kim SJ, Li LD, Han J (2009) Amplified electro kinetic response by concentration polarization near nanofluidic channel. Langmuir 25(13):7759–7765

    Article  Google Scholar 

  • Kumar K, Duan H, Hegde RS et al (2012) Printing colors at the optical diffraction limit. Nat Nanotechnol 7(9):557–561

    Article  Google Scholar 

  • Liang X, Chou SY (2008) Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett 8(5):1472–1476

    Article  Google Scholar 

  • Lin ZC, Hsu YC (2012) A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe. J Mater Process Technol 212:2321–2331

    Article  Google Scholar 

  • Liu W, Yan Y, Hu Z et al (2012) Study on the nano machining process with a vibrating AFM tip on the polymer surface. Appl Surf Sci 258:2620–2626

    Article  Google Scholar 

  • Mao Y, Kuo K, Tseng C et al (2009) Research on three dimensional machining effects using atomic force microscope. Rev Sci Instrum 80:0651056

    Article  Google Scholar 

  • Menard LD, Ramsey JM (2011) Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett 11(2):512–517

    Article  Google Scholar 

  • Peng R, Li D (2016) Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Lab Chip 16:3767–3776

    Article  Google Scholar 

  • Pires D, Hedrick JL, Silva AD et al (2010) Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328:732–735

    Article  Google Scholar 

  • Richard DP, Jin Z, Feng X et al (1999) ‘Dip-pen’ nanolithography. Science 283(5402):661–663

    Article  Google Scholar 

  • Salapaka MV, Chen DJ, Cleveland JP (2000) Linearity of amplitude and phasein tapping-mode atomic force microscopy. Phys Rev B 61(2):1106–1115

    Article  Google Scholar 

  • Sun Y, Yan Y, Hu Z et al (2012) 3D polymer nanostructures fabrication by AFM tip-based single scanning with a harder cantilever. Tribol Int 47:44–49

    Article  Google Scholar 

  • Surtchev M, de Souza NR, Jerome B (2005) The initial stages of the wearing process of thin polystyrene films studied by atomic force microscopy. Nanotechnology 16(8):1213–1220

    Article  Google Scholar 

  • Tamayo J, Garcia R (1996) Deformation: contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12(18):4430–4435

    Article  Google Scholar 

  • Yan Y, Hu Z, Zhao X et al (2010) Top-down nanomechanical machining of three-dimensional nanostructures by atomic force microscopy. Small 6(6):724–728

    Article  Google Scholar 

  • Yan Y, Sun Y, Yang Y et al (2012) Effects of the AFM tip trace on nanobundles formation on the polymer surface. Appl Surf Sci 258:9656–9663

    Article  Google Scholar 

  • Yan Y, Sun Y, Li J et al (2014) Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip. Nanoscale Res Lett 9:372

    Article  Google Scholar 

  • Yan Y, Geng Y, Hu Z (2015) Recent advances in AFM tip-based nanomechanical machining. Int J Mach Tools Manuf 99:1–18

    Article  Google Scholar 

  • Yan Y, Cui X, Geng Y et al (2017) Effect of scratching trajectory and feeding direction on formation of ripple structure on polycarbonate sheet using AFM tip-based nanomachining process. Micro Nano Lett 12(12):1011–1015

    Article  Google Scholar 

  • Yang S, Yan Y, Liang Y et al (2013) Effect of the molecular weight on deformation states of the polystyrene film by AFM single scanning. Scanning 35(5):308–315

    Article  Google Scholar 

  • Zhan DP, Han LH, Zhang J et al (2016) Confined chemical etching for electrochemical machining with nanoscale accuracy. Acc Chem Res 49(11):2596–2604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongda Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geng, Y., Yan, Y. (2018). Three-Dimensional Fabrication of Micro-/Nanostructure Using Scanning Probe Lithography. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0098-1_13

Download citation

Publish with us

Policies and ethics