Filling Technologies of Photonic Crystal Fibers and Their Applications

  • Chun-Liu ZhaoEmail author
  • D. N. Wang
  • Limin Xiao
Reference work entry


In this chapter, we shortly review the filling technologies of photonic crystal fibers (PCFs), including the selectively filling method by collapsing air holes, by splicing to a SMF with a lateral offset, and by femtosecond (fs) laser micromachining. Moreover, we demonstrate their applications in optical fiber devices, including a partially liquid-filled hollow-core PCF polarizer, a fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in PCF, and an embedded coupler based on selectively infiltrated PCF. For the applications in optical fiber temperature sensors, we demonstrate temperature sensors based on an alcohol-filled PCF Sagnac loop interferometers, temperature sensors with excellent temporal stability based on PCF with two infiltrated air holes, and a selectively infiltrated PCF with ultrahigh temperature sensitivity. Further, for the applications in gas sensors, we demonstrate a PCF loop mirror-based chemical vapor sensor, a chemical vapor sensor based on a simplified hollow-core PCF, and a hydrogen sensor based on selectively infiltrated PCF with Pt-loaded WO3 coating and discuss their sensing mechanisms. Finally, we will demonstrate a passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.


PCF filling Selective filling Partial filling and selective infiltration 


  1. R. Amezcua-Correa, F. Géȓome, S.G. Leon-Saval, N.G.R. Broderick, T.A. Birks, J.C. Knight, Opt. Express 16(2), 1142–1149 (2008)CrossRefGoogle Scholar
  2. Q.L. Bao, H. Zhang, Y. Wang, Z.H. Ni, Y.L. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19, 3077 (2009)CrossRefGoogle Scholar
  3. Q.L. Bao, H. Zhang, J.X. Yang, S. Wang, D.Y. Tong, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Adv. Funct. Mater. 20, 782 (2010a)CrossRefGoogle Scholar
  4. Q.L. Bao, H. Zhang, J.X. Yang, S. Wang, D.Y. Tong, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Adv. Funct. Mater. 20, 782 (2010b)CrossRefGoogle Scholar
  5. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, K. Loh, Nano Res. 4, 297 (2011)CrossRefGoogle Scholar
  6. F. Benabid, F. Couny, J.C. Knight, T.A. Birks, P. St, J. Russell, Nature 434(7032), 488–491 (2005)CrossRefGoogle Scholar
  7. R.A. Bergh, H.C. Lefevre, H.J. Shaw, Opt. Lett. 5, 479–481 (1980)CrossRefGoogle Scholar
  8. J. Canning, M. Stevenson, T.K. Yip, S.K. Lim, C. Martelli, Opt. Express 16(20), 15700–15708 (2008)CrossRefGoogle Scholar
  9. C. Caucheteur, M. Debliquy, D. Lahem, P. Mégret, IEEE Photon. Technol. Lett. 20(2), 96–98 (2008)CrossRefGoogle Scholar
  10. C.M.B. Cordeiro, E.M. Dos Santos, C.H. Brito Cruz, C.J.S. de Matos, D.S. Ferreiira, Opt. Express 14(18), 8403–8412 (2006)CrossRefGoogle Scholar
  11. C.M.B. Cordeiro, C.J.S. de Matos, E.M. dos Santos, A. Bozolan, J.S.K. Ong, T. Facincani, G. Chesini, A.R. Vaz, C.H.B. Cruz, Meas. Sci. Technol. 18(10), 3075–3081 (2007)CrossRefGoogle Scholar
  12. C.J.S. De Matos, C.M.B. Cordeiro, E.M. Dos Santos, J.S.K. Ong, A. Bozolan, C.H. Brito Cruz, Opt. Express 15(18), 11207–11212 (2007)CrossRefGoogle Scholar
  13. P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, M. Gu, Appl. Phys. Lett. 84(11), 1838–1840 (2004)CrossRefGoogle Scholar
  14. X. Dong, H.Y. Tam, P. Shum, Appl. Phys. Lett. 90, 151113 (2007)CrossRefGoogle Scholar
  15. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, X. Dong, Opt. Express 16, 4263–4269 (2008)CrossRefGoogle Scholar
  16. R.B. Dyott, J. Bello, V.A. Handerek, Opt. Lett. 12, 287–289 (1987)CrossRefGoogle Scholar
  17. J.C. Fanguy, L. Xu, K. Soni, S. Tao, Opt. Lett. 29(11), 1191–1193 (2004)CrossRefGoogle Scholar
  18. H.Y. Fu, H.Y. Tam, L.-Y. Shao, X. Dong, P.K.A. Wai, C. Lu, S.K. Khijwania, Appl. Opt. 47, 2835–1839 (2008)CrossRefGoogle Scholar
  19. F. Gérôme, R. Jamier, J.L. Auguste, G. Humbert, J.M. Blondy, Opt. Lett. 35(8), 1157–1159 (2010)CrossRefGoogle Scholar
  20. R.W. Gilsdorf, J.C. Palais, Appl. Opt. 33(16), 3440–3445 (1994)CrossRefGoogle Scholar
  21. T. Han, Y. Liu, Z. Wang, B. Zou, B. Tai, B. Liu, Opt. Lett. 35(12), 2061–2063 (2010)CrossRefGoogle Scholar
  22. C.J. Hensley, D.H. Broaddus, et al., Opt. Express 15, 6690–6695 (2007)CrossRefGoogle Scholar
  23. Y.L. Hoo, S. Liu, H.L. Ho, W. Jin, IEEE Photon. Technol. Lett. 22, 296–298 (2010)CrossRefGoogle Scholar
  24. Y. Huang, Y. Xu, A. Yariv, Appl. Phys. Lett. 85(22), 5182–5184 (2004)CrossRefGoogle Scholar
  25. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Express 19(14), 13578–13589 (2011)CrossRefGoogle Scholar
  26. C. Kerbage, B.J. Eggleton, Opt. Express 10(5), 246–255 (2002)CrossRefGoogle Scholar
  27. S. Kobtsev, S. Kukarin, Y. Fedotov, Opt. Express 16, 21936 (2008)CrossRefGoogle Scholar
  28. B.T. Kuhlmey, B.J. Eggleton, D.K.C. Wu, J. Lightwave Technol. 27(11), 1617–1630 (2009)CrossRefGoogle Scholar
  29. D. Linde, Appl. Phys. B 39, 201 (1986)CrossRefGoogle Scholar
  30. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, X. Dong, Appl. Opt. 44, 2382–2390 (2005)CrossRefGoogle Scholar
  31. Z.-B. Liu, X. He, D.N. Wang, Opt. Lett. 36(16), 3024–3026 (2011)CrossRefGoogle Scholar
  32. B.J. Mangan, J.C. Knight, T.A. Birks, P. St, J. Russell, A.H. Greenaway, Electron. Lett. 36, 1358–1359 (2000)CrossRefGoogle Scholar
  33. I.A. Marcinkevi, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26(5), 277–279 (2001)CrossRefGoogle Scholar
  34. C. Martelli, J. Canning, K. Lyytikainen, N. Groothoff, Opt. Express 13(10), 3890–3895 (2005)CrossRefGoogle Scholar
  35. V.P. Minkovich, D. Monzón-Hernández, Opt. Express 14(18), 8413–8418 (2006)CrossRefGoogle Scholar
  36. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, E.P. Ippen, Appl. Phys. B 65, 277 (1997)CrossRefGoogle Scholar
  37. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T.P. Hansen, J. Opt. A Pure Appl. Opt. 7(8), L13–L20 (2005)CrossRefGoogle Scholar
  38. L. Niu, C.-L. Zhao, L. Qi, C.C. Chan, J. Kang, S. Jin, J. Guo, H. Wei, J. Lightwave Technol. 32(22), 4416–4421 (2014a)CrossRefGoogle Scholar
  39. L. Niu, C.-L. Zhao, J. Kang, S. Jin, J. Guo, H. Wei, Opt. Commun. 313, 243–247 (2014b)CrossRefGoogle Scholar
  40. O. Okhotnikov, A. Grudinin, M. Pessa, New J. Phys. 6, 177 (2004)CrossRefGoogle Scholar
  41. W.E.P. Paddena, M.A. van Eijkelenborg, A. Argyros, N.A. Issa, Appl. Phys. Lett. 84, 1689–1691 (2004)CrossRefGoogle Scholar
  42. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A.C. Ferrari, Appl. Phys. Lett. 97, 203106 (2010)CrossRefGoogle Scholar
  43. W. Qian, C.-L. Zhao, X. Dong, W. Jin, Opt. Commun. 283, 5250–5254 (2010)CrossRefGoogle Scholar
  44. W. Qian, C.-L. Zhao, Y. Wang, C.C. Chan, S. Liu, W. Jin, Opt. Lett. 36(16), 3296–3298 (2011a)CrossRefGoogle Scholar
  45. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, Opt. Lett. 36(9), 1548–1550 (2011b)CrossRefGoogle Scholar
  46. W.H. Renninger, A. Chong, F.W. Wise, Opt. Lett. 33, 3025 (2008)CrossRefGoogle Scholar
  47. P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, J.V. Badding, Science 311, 1583–1586 (2006)CrossRefGoogle Scholar
  48. Y.W. Song, S.Y. Jang, W.S. Han, M.K. Bae, Appl. Phys. Lett. 96, 051122 (2010)CrossRefGoogle Scholar
  49. G. Steinmeyer, D.H. Sutter, L. Gallmann, N. Matuschek, U. Keller, Science 286, 1507 (1999)CrossRefGoogle Scholar
  50. Y. Sun, S.I. Shopova, G. Frye-Mason, X. Fan, Opt. Lett. 33, 788–790 (2008)CrossRefGoogle Scholar
  51. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, ACS Nano 4, 803 (2010a)CrossRefGoogle Scholar
  52. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E.J.R. Kelleher, J.C. Travers, A.C. Ferrari, Nano Res. 3, 653 (2010b)CrossRefGoogle Scholar
  53. X. Tian, M. Tang, P.P. Shum, Y. Gong, C. Lin, S. Fu, T. Zhang, Opt. Lett. 34, 1432 (2009)CrossRefGoogle Scholar
  54. G.E. Town, W. Yuan, R. McCosker, O. Bang, Opt. Lett. 35, 856–858 (2010)CrossRefGoogle Scholar
  55. T. Toyoda, M. Yabe, J. Phys. D Appl. Phys. 16, L97–L100 (1983)CrossRefGoogle Scholar
  56. J. Villatoro, M.P. Kreuzer, R. Jha, V.P. Minkovich, V. Finazzi, G. Badenes, V. Pruneri, Opt. Express 17(3), 1448–1453 (2009)CrossRefGoogle Scholar
  57. Y. Wang, L. Xiao, D. Wang, W. Jin, Opt. Lett. 32, 1035 (2007a)CrossRefGoogle Scholar
  58. Z. Wang, T. Taru, T.A. Birks, J.C. Knight, Opt. Express 15, 4795–4803 (2007b)CrossRefGoogle Scholar
  59. F. Wang, A.G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I.H. White, W.I. Milne, A.C. Ferrari, Nat. Nanotechnol. 3, 738 (2008)CrossRefGoogle Scholar
  60. Y. Wang, C.R. Liao, D.N. Wang, Opt. Express 18(17), 18056–18060 (2010a)CrossRefGoogle Scholar
  61. Y. Wang, Y. Li, C. Liao, D.N. Wang, M. Yang, P. Lu, IEEE Photon. Lett. 22, 39–41 (2010b)CrossRefGoogle Scholar
  62. Y. Wang, M. Yang, D.N. Wang, C.R. Liao, IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011)CrossRefGoogle Scholar
  63. Y. Wang, C.R. Liao, D.N. Wang, Opt. Lett. 37(22), 4747–4749 (2012)CrossRefGoogle Scholar
  64. Y. Wang, D.N. Wang, F. Yang, Z. Li, M. Yang, Opt. Lett. 39(13), 3872–3875 (2014)CrossRefGoogle Scholar
  65. D.K.C. Wu, B.T. Kuhlmey, B.J. Eggleton, Opt. Lett. 34, 322–324 (2009)CrossRefGoogle Scholar
  66. Z. Wu, Z. Wang, Y.-G. Liu, T. Han, S. Li, H. Wei, Opt. Express 19(18), 17344–17349 (2011)CrossRefGoogle Scholar
  67. L. Xiao, W. Jin, M.S. Demokan, H.L. Ho, Y.L. Hoo, C. Zhao, Opt. Express 13(22), 9014–9022 (2005)CrossRefGoogle Scholar
  68. L. Xiao, W. Jin, M.S. Demokan, Opt. Express 15(24), 15637–15647 (2007)CrossRefGoogle Scholar
  69. H.F. Xuan, W. Jin, J. Ju, Y.P. Wang, M. Zhang, Y.B. Liao, M.H. Chen, Opt. Lett. 33, 845–847 (2008)CrossRefGoogle Scholar
  70. M. Yang, D.N. Wang, J. Lightwave Technol. 30(21), 3407–3412 (2012)CrossRefGoogle Scholar
  71. M. Yang, D.N. Wang, Y. Wang, C.R. Liao, Opt. Lett. 36(5), 636–638 (2011)CrossRefGoogle Scholar
  72. M. Yang, Z. Yang, J. Dai, D. Zhang, Sensors Actuators B 166–167, 632–636 (2012)CrossRefGoogle Scholar
  73. A. Yariv, Optical Electronics in Modern Communications, 5th ed. London, U.K.: Oxford Univ. Press, (1997)Google Scholar
  74. W. Yuan, G.E. Town, O. Bang, IEEE Sensors J. 10, 1192–1199 (2010)CrossRefGoogle Scholar
  75. X. Zhang, R. Wang, F.M. Cox, B.T. Kuhlmey, M.C.J. Large, Opt. Express 15(24), 16270–16278 (2007)CrossRefGoogle Scholar
  76. H. Zhang, D.Y. Tang, R.J. Knize, L.M. Zhao, Q.L. Bao, K.P. Loh, Appl. Phys. Lett. 96, 111112 (2010)CrossRefGoogle Scholar
  77. C.-L. Zhao, X. Yang, et al., IEEE Photon. Technol. Lett. 16, 2535–2537 (2004)CrossRefGoogle Scholar
  78. C.-L. Zhao, Z. Wang, S. Zhang, L. Qi, C. Zhong, Z. Zhang, S. Jin, J. Guo, H. Wei, Opt. Lett. 37(22), 4789–4791 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Optical and Electrical TechnologyChina Jiliang UniversityHangzhouChina
  2. 2.Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE)Department of Optical Science and Engineering Fudan UniversityShanghaiChina
  3. 3.Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghaiChina
  4. 4.Shanghai Engineering Research Center of Ultra-Precision Optical ManufacturingFudan UniversityShanghaiChina

Section editors and affiliations

  • Dongning Wang
    • 1
  1. 1.College of Optical and Electronic TechnologyChina Jiliang UniversityHangzhouChina

Personalised recommendations