Skip to main content

Modeling the Reactive Transport of Isotopologues of Environmental Pollutants

  • Living reference work entry
  • First Online:
Handbook of Isotopologue Biogeochemistry

Abstract

Reactive transport modeling of organic pollutants is important for decision-making in a large number of environmental health problems such as protection of water sources or drinking water wells, or prevention of vapor intrusion into buildings. The rise of compound-specific and position-specific isotope analysis in environmental pollutants has led to the development of reactive transport models for isotopologues (same molecules with different isotopic substitution) which reinforce very much the classical concentration-based transport models. This chapter reviews the history of isotopologue transport models in the environment and presents the current state of the art of modeling approaches. Single-element approaches are presented first, followed by multi-elemental approaches. The special case of stable chlorine isotopes is emphasized thereafter because of special requirements for modeling the chlorine isotopes 37Cl and 35Cl. The chapter ends with a summary and comparison of all approaches and a discussion of future needs for developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aeppli C, Holmstrand H, Andersson P, Gustafsson O. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole gc/ms using standard isotope bracketing. Anal Chem. 2010;82:420–6.

    Article  Google Scholar 

  • Atteia O, Guillot C. Factors controlling btex and chlorinated solvents plume length under natural attenuation conditions. J Contam Hydrol. 2007;90:81–104.

    Article  Google Scholar 

  • Badin A, Buttet G, Maillard J, Holliger C, Hunkeler D. Multiple dual c-cl isotope patterns associated with reductive dechlorination of tetrachloroethene. Environ Sci Technol. 2014;48:9179–86.

    Article  Google Scholar 

  • Badin A, Broholm MM, Jacobsen CS, Palau J, Dennis P, Hunkeler D. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. J Contam Hydrol. 2016;192:1–19.

    Article  Google Scholar 

  • Bear J. Hydraulics of groundwater. New York: McGraw-Hill; 1979.

    Google Scholar 

  • Beranger SC, Sleep BE, Lollar BS, Monteagudo FP. Transport, biodegradation and isotopic fractionation of chlorinated ethenes: modeling and parameter estimation methods. Adv Water Resour. 2005;28:87–98.

    Article  Google Scholar 

  • Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Soder K. Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem. 2011;83:7624–34.

    Article  Google Scholar 

  • Botosoa EP, Caytan E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Unexpected fractionation in site-specific c-13 isotopic distribution detected by quantitative c-13 nmr at natural abundance. J Am Chem Soc. 2008;130:414–5.

    Article  Google Scholar 

  • Bouchard D, Hunkeler D, Hohener P, Aravena R, Broholm M, Kjeldsen P. Use of stable isotope analysis to assess biodegradation of petroleum hydrocarbons in the unsaturated zone. Laboratory studies, field studies, and mathematical simulations. In: Nützmann G, Viotti P, Aagaard P, editors. Reactive transport in soil and groundwater: processes and models. Berlin: Springer; 2005. p. 17–37.

    Chapter  Google Scholar 

  • Bouchard D, Hunkeler D, Hohener P. Carbon isotope fractionation during aerobic biodegradation of n-alkanes and aromatic compounds in unsaturated sand. Org Geochem. 2008a;39:23–33.

    Article  Google Scholar 

  • Bouchard D, Hunkeler D, Gaganis P, Aravena R, Höhener P, Kjeldsen P. Carbon isotope fractionation during migration of petroleum hydrocarbon vapors in the unsaturated zone: field experiment at Værløse airbase, Denmark, and modeling. Environ Sci Technol. 2008b;42:596–601.

    Article  Google Scholar 

  • Bouchard D, Höhener P, Hunkeler D. Carbon isotope fractionation during volatilization of petroleum hydrocarbons and diffusion across a porous medium: a column experiment. Environ Sci Technol. 2008c;42:7801–6.

    Article  Google Scholar 

  • Bouchard D, Höhener P, Cornaton P, Hunkeler D. Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone. J Contam Hydrol. 2011;119:44–54.

    Article  Google Scholar 

  • Cerling T, Solomon D, Quade J, Bowman J. On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim A. 1991;55:3403–5.

    Article  Google Scholar 

  • Chiang W. 3D-groundwater modelling with PMWIN. 2nd ed. Heidelberg: Springer; 2005.

    Google Scholar 

  • Cirpka OA, Valocchi AJ. Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour. 2007;30:1668–79.

    Article  Google Scholar 

  • Cirpka OA, Valocchi A. Reply to comments on “two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by H. Shao et al. Adv Water Resour. 2009;32:298–301.

    Article  Google Scholar 

  • Clement T, Sun Y, Hooker B, Petersen J. Modeling multispecies reactive transport in ground water. Ground Water Monit Remed. 1998;18:79–92.

    Article  Google Scholar 

  • Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR. Isotope-abundance variations of selected elements – (IUPAC technical report). Pure Appl Chem. 2002;74:1987–2017.

    Article  Google Scholar 

  • Cretnik S, Bernstein A, Shouakar-Stash O, Loffler F, Elsner M. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular c-cl bond competition in trichloroethene (tce) reductive dehalogenation. Molecules. 2014;19:6450–73.

    Article  Google Scholar 

  • Domenico PA. An analytical model for multidimensional transport of a decaying contaminant species. J Hydrol. 1987;91:49–58.

    Article  Google Scholar 

  • EAWAG: Biocatalysis/biodegradation database. 2016. http://eawag-bbd.ethz.ch/

  • Elsner M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit. 2010;12:2005–31.

    Article  Google Scholar 

  • Elsner M, Hunkeler D. Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. Anal Chem. 2008;80:4731–40.

    Article  Google Scholar 

  • Elsner M, Zwank L, Hunkeler D, Schwarzenbach R. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol. 2005;39:6896–916.

    Article  Google Scholar 

  • Elsner M, McKelvie J, Lacrampe-Couloume G, Lollar BS. Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol. 2007;41:5693–700.

    Article  Google Scholar 

  • EPA. US EPA. Biochlor natural attenuation decision support system user’s manual version 1.0. United States Environmental Protection Agency, Office of Research and Development, Washington, DC 20460, EPA/600/R-00/008; 2000.

    Google Scholar 

  • Gauchotte C, O’Sullivan G, Davis S, Kalin R. Development of an advanced on-line position-specific stable carbon isotope system and application to methyl tert-butyl ether. Rapid Comm Mass Spectrometry. 2009;23:3183–93.

    Article  Google Scholar 

  • Gilbert A, Yamada K, Yoshida N. Exploration of intramolecular C-13 isotope distribution in long chain n-alkanes (C-11-C-31) using isotopic C-13 NMR. Org Geochem. 2013;62:56–61.

    Article  Google Scholar 

  • Höhener P. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with Biochlor-ISO. J Contam Hydrol. 2016;195:52–61.

    Google Scholar 

  • Höhener P, Atteia O. Multidimensional analytical models for isotope ratios in groundwater pollutant plumes of organic contaminants undergoing different biodegradation kinetics. Adv Water Resour. 2010;33:740–51.

    Article  Google Scholar 

  • Höhener P, Atteia O. Rayleigh equation for evolution of stable isotope ratios in contaminant decay chains. Geochim Cosmochim A. 2014;126:70–7.

    Article  Google Scholar 

  • Höhener P, Yu X. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption. J Contam Hydrol. 2012;129/130:54–61.

    Article  Google Scholar 

  • Höhener P, Silvestre V, Le François A, Loquet D, Botosoa EP, Robins RJ, Remaud GS. Analytical model for site-specific isotope fractionation in 13c during sorption: determination by isotopic 13c nmr spectrometry with vanillin as model compound. Chemosphere. 2012;87:445–52.

    Article  Google Scholar 

  • Höhener P, Elsner M, Eisenmann H, Atteia O. Improved constraints on in situ rates and estimates of complete chloroethene degradation in groundwater plumes from stable carbon isotope mass balances. J Contam Hydrol. 2015;182:173–82.

    Article  Google Scholar 

  • Höhener P, Li ZM, Julien M, Nun P, Robins RJ, Remaud GS. Simulating compound-specific isotope ratios in plumes of groundwater pollutants with Bioscreen-AT-ISO. Groundwater. 2017;55:261–7.

    Article  Google Scholar 

  • Hunkeler D, Van Breukelen BM, Elsner M. Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes. Environ Sci Technol. 2009;43:6750–6.

    Article  Google Scholar 

  • Jin B, Rolle M. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere. 2014;95:131–9.

    Article  Google Scholar 

  • Jin BA, Laskov C, Rolle M, Haderlein SB. Chlorine isotope analysis of organic contaminants using GC-qMS: method optimization and comparison of different evaluation schemes. Environ Sci Technol. 2011;45:5279–86.

    Article  Google Scholar 

  • Jin B, Haderlein SB, Rolle M. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination. Environ Sci Technol. 2013;47:1443–51.

    Google Scholar 

  • Jin B, Rolle M, Li T, Haderlein SB. Diffusive fractionation of btex and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ Sci Technol. 2014;48:6141–50.

    Article  Google Scholar 

  • Julien M, Parinet J, Nun P, Bayle K, Höhener P, Robins RJ, Remaud GS. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13c nuclear magnetic resonance spectrometry. Environ Pollut. 2015;205:299–306.

    Article  Google Scholar 

  • Julien M, Nun P, Parinet J, Höhener P, Robins RJ, Remaud GS. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Talanta. 2016;147:383–9.

    Article  Google Scholar 

  • Julien M, Höhener P, Robins RJ, Parinet J, Remaud GS. Position-specific 13c fractionation during liquid-vapor transition is correlated to the strength of intermolecular interaction in the liquid phase. J Phys Chem. 2017;121:5810–7.

    Article  Google Scholar 

  • Julien M, Gilbert A, Yamada K, Robins RJ, Höhener P, Yoshida N, Remaud GS. Expanded uncertainty associated with determination of isotope enrichment factors: comparison of two-points calculation and rayleigh-plot. Talanta. 2018;176:267–73.

    Article  Google Scholar 

  • Karanovic M, Neville CJ, Andrews CB. Bioscreen-AT: Bioscreen with an exact analytical solution. Ground Water. 2007;45:242–5.

    Article  Google Scholar 

  • Mansfeldt T, Höhener P. Isotopic fingerprints of iron-cyanide complexes in the environment. Environ Sci Technol. 2016;50:7382–8.

    Article  Google Scholar 

  • Mayer K, Frind E, Blowes W. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res. 2002;38:1–21.

    Article  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH. Stable isotope factionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol. 2004;75:215–55.

    Article  Google Scholar 

  • Newell C, McLeod R, Gonzales J. BIOSCREEN natural attenuation decision support system, User’s manual, version 1.4 revisions. Washington, DC: EPA Office of Research and Development; 1997.

    Google Scholar 

  • Palau J, Cretnik S, Shouakar-Stash O, Hoche M, Elsner M, Hunkeler D. C and cl isotope fractionation of 1, 2-dichloroethane displays unique delta C-13/delta cl-37 patterns for pathway identification and reveals surprising c-cl bond involvement in microbial oxidation. Environ Sci Technol. 2014a;48:9430–7.

    Article  Google Scholar 

  • Palau J, Shouakar-Stash O, Hunkeler D. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane. Environ Sci Technol. 2014b;48:14400–8.

    Article  Google Scholar 

  • Palau J, Jamin P, Badin A, Vanhecke N, Haerens B, Brouyere S, Hunkeler D. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater. Water Res. 2016;92:235–43.

    Article  Google Scholar 

  • Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Comm Mass Spectrometry. 2007;21:3077–84.

    Article  Google Scholar 

  • Schmidt T, Haderlein S, Morgenroth E, Schirmer M, Effenberger M. Use and occurrence of fuel oxygenates in europe. ACS Symp Ser. 2002;799:58–79.

    Article  Google Scholar 

  • Sherwood Lollar B, Slater G, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P. Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem. 1999;30:813–20.

    Article  Google Scholar 

  • Shouakar-Stash O, Frape SK, Drimmie RJ. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. J Contam Hydrol. 2003;60:211–28.

    Article  Google Scholar 

  • Sun Y, Petersen JN, Clement TP, Skeen RS. Development of analytical solutions for multispecies transport with serial and parallel reactions. Water Resour Res. 1999;35:185–90.

    Article  Google Scholar 

  • Thullner M, Centler F, Richnow HH, Fischer A. Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis – review of recent developments. Org Geochem. 2012;42:1440–60.

    Article  Google Scholar 

  • USGS. PHREEQC: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Geological Survey of the United States. 2002. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/

  • Van Breukelen BM, Hunkeler D, Volkering F. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ Sci Technol. 2005;39:4189–97.

    Article  Google Scholar 

  • Van Breukelen BM, Thouement H, Stack P, Vanderford M, Philp P, Kuder T. Modeling 3d-csia data: carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of tce to ethene. J Contam Hydrol. 2017;204:79–89.

    Article  Google Scholar 

  • Van Warmerdam E, Frape S, Aravena R, Drimmie R, Flatt H, Cherry JA. Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem. 1995;10:547–52.

    Article  Google Scholar 

  • Vogt C, Dorer C, Musat F, Richnow HH. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons – from enzymes to the environment. Current Op Biotechnol. 2016;41:90–8.

    Article  Google Scholar 

  • Wexler E. Analytical solutions for one-, two, and three-dimensional solute transport in groundwater systems with uniform flow. Techniques of water resources investigations of the United States Geological Survey, Chapter B-7, Book 3, applications of hydraulics. 79 pp; 1992.

    Google Scholar 

  • Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R, Pancost RD, Machackova J. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environ Sci Technol. 2012;46(10918–10):925.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Höhener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Höhener, P. (2023). Modeling the Reactive Transport of Isotopologues of Environmental Pollutants. In: Yoshida, N., Gilbert, A., Foriel, J. (eds) Handbook of Isotopologue Biogeochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7048-8_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7048-8_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7048-8

  • Online ISBN: 978-981-10-7048-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics