Skip to main content

Position-Specific 13C Isotope Analysis by NMR as a Tool for Characterizing the Manufacturing Process Used and for Fighting Pharmaceutics Counterfeiting

  • Living reference work entry
  • First Online:
Handbook of Isotopologue Biogeochemistry

Abstract

Counterfeits based on deliberate copying of processes for generic medicines are not straightforward to detect. Multidimensional isotope profiling is a useful tool for the characterization of the provenance of the active molecule. More parameters than the global isotope composition can be retrieved from isotope ratio measured by nuclear magnetic resonance spectrometry (irm-NMR). This has been demonstrated by the applications of irm-2H NMR on some active pharmaceutical ingredients (APIs) but it remains limited to rather small molecules (<300 g mol−1). Isotopic 13C NMR spectrometry measures the 13C content of each carbon position of the API, providing a unique 13C profile that reflects the whole history of the API including the raw materials and the manufacturing process used. Recent technological NMR developments have made further improvements to enhance sensitivity that allow the study of larger molecules and/or of low amount of material. The representation of the isotope profile can be considered as analogous to that carried out in “omic” approaches: comparison of data built up from a multiplicity of variables and collected from several samples using the same protocol, introducing then the notion of “isotopomics.” Isotopomics appears as a unique tool for tagganting each batch produced at natural isotopic abundance and can be used for traceability within the supply chain both by the manufacturer and by the regulatory bodies as a new parameter for the validation master file beside the mandatory impurities profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acetti D, Brenna E, Fronza G, Fuganti C. Monitoring the synthetic procedures of commercial drugs by 2H NMR spectroscopy: the case of ibuprofen and naproxen. Talanta. 2008;76:651–5.

    Article  Google Scholar 

  • Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. Prog Nucl Magn Reson Spectrosc. 2020;120–121:1–24.

    Article  Google Scholar 

  • Botosoa EP, Silvestre V, Robins RJ, Moreno Rojas JM, Guillou C, Remaud GS. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography. J Chromato A. 2009;1216:7043–6.

    Article  Google Scholar 

  • Bussy U, Thibaudeau C, Thomas F, Desmurs J-R, Jamin E, Remaud GS, Silvestre V, Akoka S. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. Talanta. 2011;85:1909–5.

    Article  Google Scholar 

  • Caytan E, Botosoa EP, Silvestre V, Robins RJ, Akoka S, Remaud GS. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination. Anal Chem. 2007;79:8266–3.

    Article  Google Scholar 

  • Challa S, Potumarthi R. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries. Appl Biochem Biotechnol. 2013;169:66–10.

    Article  Google Scholar 

  • Cicchetti E, Silvestre V, Fieber W, Sommer H, Remaud G, Akoka S, et al. Procedure for the isolation of vanillin from vanilla extracts prior to isotopic authentication by quantitative 13C-NMR. Flavour Fragr J. 2010;25:463–7.

    Article  Google Scholar 

  • Cookson DJ, Smith BE. Optimal experimental parameters for quantitative pulse Fourier transform proton NMR spectrometry. Anal Chem. 1982;54:2593.

    Article  Google Scholar 

  • Davison M, editor. Pharmaceutical anti-counterfeiting: combating the real danger from fake drugs. Hoboken: Wiley; 2011.

    Google Scholar 

  • Deconinck E, Van Nederkassel AM, Stanimirova I, Daszykowski M, Bensaid FF, Lees M, Martin GJ, Desmurs J-R, Smeyers-Verbeke J, Massart DL, Vander Heyden Y. Isotopic ratios to detect infringements of patents or proprietary processes of pharmaceuticals: two case studies. J Pharm Biomed Anal. 2008;48:27–41.

    Article  Google Scholar 

  • Dégardin K, Roggo Y, Margot P. Forensic intelligence for medicine anti-counterfeiting. Forensic Sci Int. 2015;248:15–7.

    Article  Google Scholar 

  • Doddrell DM, Pegg DT, Bendall MR. Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson. 1982;48:323–4.

    Google Scholar 

  • Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol. 2005;39:6896–20.

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. New York: Oxford University Press; 1991.

    Google Scholar 

  • European Commission (2005) (Enterprise Directorate General). EMA guidelines to good manufacturing practice, medicinal products for human and veterinary use, Part II, basic requirements for active substances used as starting materials. Brussels, Belgium, October 2005.

    Google Scholar 

  • Fernandez FM, Green MD, Newton PN. Prevalence and detection of counterfeit pharmaceuticals: a mini review. Ind Eng Chem Res. 2008;47:585.

    Article  Google Scholar 

  • Gavin PF, Olsen BA, Wirth DD, Lorenz KT. A quality evaluation strategy for multi-sourced active pharmaceutical ingredient (API) starting materials. J Pharm Biomed Anal. 2006;41:1251–8.

    Article  Google Scholar 

  • Gentile N, Siegwolf RTW, Esseiva P, Doyle S, Zollinger K, Delémont O. Isotope ratio mass spectrometry as a tool for source inference in forensic science: a critical review. Forensic Sci Int. 2015;251:139–19.

    Article  Google Scholar 

  • Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. PNAS. 2012;109:18204–5.

    Article  Google Scholar 

  • Gilbert A, Yamada K, Yoshida N. Evaluation of on-line pyrolysis coupled to isotope ratio mass spectrometry for the determination of position-specific 13C isotope composition of short chain n-alkanes (C6–C12). Talanta. 2016;153:158–4.

    Article  Google Scholar 

  • Gilveska T, Gehre M, Richnow HH. Multidimentional isotope analysis of carbon, hydrogen and oxygen as tool for identification of the origin of ibuprofen. J Pharm Biomed Anal. 2015;115:410–7.

    Article  Google Scholar 

  • Gooch J, Daniel B, Abbate V, Frascione N. Taggant materials in forensic science: a review. TrAC Trends Anal Chem. 2016;83:49–5.

    Article  Google Scholar 

  • Haddad L, Renou S, Remaud GS, Rizk T, Bejjani J, Akoka S. A precise and rapid isotopomic analysis of small quantities of cholesterol at natural abundance by optimized 1H-13C 2D NMR. Anal Bioanal Chem. 2021;413:1521–11.

    Article  Google Scholar 

  • Heck G, Mileham C, Martin G. Hydrogen exchange in aromatic compounds: substituent effects studied by experimental designs. Analusis. 1997;6:202–6.

    Google Scholar 

  • ICH: International Conference on Harmonization (2008) Q8(R1), Pharmaceutical development. Geneva, 2008.

    Google Scholar 

  • Jasper JP, Westenberger BJ, Spencer JA, Buhse LF, Nasr M. Stable isotopic characterization of active pharmaceutical ingredients. J Pharm Biomed Anal. 2004a;35:21–9.

    Article  Google Scholar 

  • Jasper JP, Fourel F, Eaton A, Morrison J, Phillips A. Stable isotopic characterization of analgesic drugs. Pharm Technol. 2004b;28:60–7.

    Google Scholar 

  • Joubert V, Silvestre V, Grand M, Loquet D, Ladroue V, Besacier F, Akoka S, Remaud GS. Full spectrum isotopic 13C NMR using polarization transfer for position-specific isotope analysis. Anal Chem. 2018;90:8692–7.

    Article  Google Scholar 

  • Julien M (2015) Détermination des Effets Isotopiques Position-Spécifiques par Résonance Magnétique Nucléaire (RMN) du carbone-13 et modélisation de la remédiation du méthyl tert-butyl éther (MTBE). Thesis, University of Nantes, France.

    Google Scholar 

  • Julien M, Parinet J, Nun P, Bayle K, Höhener P, Robins RJ, Remaud GS. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Environ Pollu. 2015;205:299–7.

    Article  Google Scholar 

  • Julien M, Höhener P, Robins RJ, Parinet J, Remaud GS. Position-specific 13C fractionation during liquid−vapor transition correlated to the strength of intermolecular interaction in the liquid phase. J Phys Chem B. 2017;121:5810–7.

    Article  Google Scholar 

  • Lesot P, Lafon O. Natural abundance 2H NMR spectroscopy. In: TaK L, editor. Encyclopedia of spectroscopy and spectrometry, vol. 3. 3rd ed. Elsevier; 2017. p. 1–14.

    Google Scholar 

  • Martin GJ. Tracing back the origin of vanillin by SNIF-NMR. Industrial Chem Library. 1996;8:506–21.

    Article  Google Scholar 

  • Martineau E, Akoka S, Boisseau R, Delanoue B, Giraudeau P. Fast quantitative 1H–13C two-dimensional NMR with very high precision. Anal Chem. 2013;85:4777–6.

    Article  Google Scholar 

  • Monakhova YB, Holzgrabe U, Diehl BWK. Current role and future perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of pharmaceutical products. J Pharm Biomed Anal. 2018;147:580–9.

    Article  Google Scholar 

  • Morris GA, Freeman R. Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc. 1979;101:760–2.

    Article  Google Scholar 

  • Remaud GS, Bussy U, Lees M, Thomas F, Jean-Roger Desmurs J-R, Jamin E, Silvestre V, Akoka S. NMR spectrometry isotopic fingerprinting: a tool for the manufacturer for tracking Active Pharmaceutical Ingredients from starting materials to final medicines. Eur J Pharm Sci. 2013;48:464–9.

    Article  Google Scholar 

  • Remaud GS, Giraudeau P, Lesot P, Akoka S. Isotope ratio monitoring by NMR. Part 1: recent advances. In: Webb G, editor. Modern magnetic resonance. Cham: Springer; 2017.

    Google Scholar 

  • Robins RJ, Romek KM, Grand M, Nun P, Diomande D, Julien M, Remaud GS. Difficulties in differentiating natural from synthetic alkaloids by isotope ratio monitoring using 13C nuclear magnetic resonance spectrometry. Planta Med. 2018;84:935.

    Article  Google Scholar 

  • Sabatelli AD, Pearson A, Jasper JP. Process patent protection via analysis of stable isotope ratios. Org Process Res Dev. 2017;21:956–9.

    Article  Google Scholar 

  • Silvestre V, Maroga Mboula V, Jouitteau C, Akoka S, Robins RJ, Remaud GS. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: Site-specific 13C content of aspirin and paracetamol. J Pharm Biomed Anal. 2009;50:336.

    Article  Google Scholar 

  • Singleton DA, Thomas AA. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J Am Chem. 1995;117(9357):1.

    Google Scholar 

  • Stanimirova I, Daszykowski M, Van Gyseghem E, Bensaid FF, Lees M, Smeyers-Verbeke J, Massart DL, Vander Heyden Y. Chemotrical exploration of an isotopic ratio data set of acetylsalicylic acid. Anal Chimi Acta. 2005;552:1–11.

    Article  Google Scholar 

  • Tenailleau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C-NMR. J Magn Reson. 2007;185:50–8.

    Article  Google Scholar 

  • Thibaudeau C, Remaud G, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;82:5582–8.

    Article  Google Scholar 

  • Thomas F, Jamin E. SNIF-NMR applications in an economic context: fraud detection in food products. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer; 2017. p. 1–12.

    Google Scholar 

  • US Food and Drug Administration (2006) Guidance for industry: BACPACI: intermediates in drug substance synthesis: bulk actives post-approval changes: chemistry, manufacturing, and controls documentation. Rockville, MD; 2001 February Withdrawn Fed. Regist. Notice June 2006.

    Google Scholar 

  • WHO (2017). https://www.who.int/news/item/29-05-2017-seventieth-world-health-assembly-update-29-may-2017, Consulted the 1st of July 2021.

  • Wokovich AM, Spencer JA, Westenberger BJ, Buhse LF, Jasper JP. Stable isotopic composition of the active pharmaceutical ingredient (API) naproxen. J Pharm Biomed Anal. 2005;38:781–3.

    Article  Google Scholar 

  • Zhang B-L, Jouitteau C, Pionnier S, Gentil E. Determination of multiple equilibrium isotopic fractionation factors at natural abundance in liquid-vapor transitions of organic molecules. J Phys Chem B. 2002;106:2983–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Remaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Remaud, G.S., Akoka, S., Thomas, F. (2023). Position-Specific 13C Isotope Analysis by NMR as a Tool for Characterizing the Manufacturing Process Used and for Fighting Pharmaceutics Counterfeiting. In: Yoshida, N., Gilbert, A., Foriel, J. (eds) Handbook of Isotopologue Biogeochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7048-8_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7048-8_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7048-8

  • Online ISBN: 978-981-10-7048-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics