Skip to main content

Position-Specific 13C Isotope Analysis by NMR as a Tool for Authentication of Ethanol-Containing Beverages

  • Living reference work entry
  • First Online:
Handbook of Isotopologue Biogeochemistry

Abstract

It was established that irm-13C NMR is a performant tool to study the 13C intramolecular distribution in ethanol and that is the efficient way to assess the position-specific isotope compositions in the parent carbohydrates (glucose, fructose, or sucrose). Furthermore, intramolecular 13C isotope distribution of ethanol are highly consistent with those obtained using irm-MS coupled before head to a hyphenated GC-Pyrolysis-GC device. It is therefore routinely used for the authentication of fruit-based products and other products containing sugars. Irm-13C NMR is notably a powerful tool for detection of all sources of added sugar, including the previously undetectable cane and maize sources, readily available in pineapple- and tequila-producing countries. Eventually, a correlation was shown between vine water status and the intramolecular 13C distribution. Therefore, irm-13C NMR can be applied for retracing growing conditions of the vines which produced a given wine, even many years after the grapes’ harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. Prog Nucl Magn Reson Spectrosc. 2020;120–121:1–24.

    Article  Google Scholar 

  • Bayle K, Akoka S, Remaud GS, Robins RJ. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited. J Biol Chem. 2015a;290(7):4118–28.

    Article  Google Scholar 

  • Bayle K, Grand M, Chaintreau A, Robins RJ, Fieber W, Sommer H, Akoka S, Remaud GS. Internal referencing for 13C position-specific isotope analysis measured by NMR spectrometry. Anal Chem. 2015b;87:7550–4.

    Article  Google Scholar 

  • Botosoa EP, Caytan E, Silvestre V, Robins RJ, Akoka S, Remaud GS. Unexpected fractionation in site-specific 13C isotopic distribution detected by quantitative 13C NMR at natural abundance. J Am Chem Soc. 2008;130:414–5.

    Article  Google Scholar 

  • Brooks JR, Buchmann N, Phillips S, Ehleringer B, Evans RD, Lott M, Martinelli L, Pockman W, Sandquist D, Sparks J, Sperry L, Williams D, Ehleringer JR. Heavy and light beer: a carbon isotope approach to detect C4 carbon in beers of different origins, styles, and prices. J Agric Food Chem. 2002;50:6413–8.

    Article  Google Scholar 

  • Bussy U, Thibaudeau C, Thomas F, Desmurs JR, Jamin E, Remaud GS, Silvestre V, Akoka S. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. Talanta. 2011;85:1909–14.

    Article  Google Scholar 

  • Caytan E, Botosoa EP, Silvestre V, Robins RJ, Akoka S, Remaud GS. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination. Anal Chem. 2007a;79:8266–9.

    Article  Google Scholar 

  • Caytan E, Remaud GS, Tenailleau E, Akoka S. Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta. 2007b;71:1016–21.

    Article  Google Scholar 

  • Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–60.

    Article  Google Scholar 

  • Diomande DG, Martineau E, Gilbert A, Nun P, Murata A, Yamada K, Watanabe N, Tea I, Robins RJ, Yoshida N, Remaud GS. Position-specific isotope analysis of xanthines: A 13C nuclear magnetic resonance method to determine the 13C intramolecular composition at natural abundance. Anal Chem. 2015;87:6600–6.

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT. Carbon Isotope Discrimination and Photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1989;40:503–37.

    Article  Google Scholar 

  • Gauchotte-Lindsay C. Turnbull SM On-line high-precision carbon position-specific stable isotope analysis: a review. Trends Anal Chem. 2016;76:115–25.

    Article  Google Scholar 

  • Gilbert A, Silvestre V, Robins RJ, Remaud GS. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–85.

    Article  Google Scholar 

  • Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, Akoka S, Remaud GS. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 2011;34:1104–12.

    Article  Google Scholar 

  • Gilbert A, Silvestre V, Robins RJ, Remaud GS, Tcherkez G. Biochemical and physiological determinants of intramolecular isotope patterns in sucrose from C3, C4 and CAM plants accessed by isotopic 13C NMR spectrometry: a viewpoint. Nat Prod Rep. 2012a;29:476–86.

    Article  Google Scholar 

  • Gilbert A, Hattori R, Silvestre V, Wasano N, Akoka S, Hirano S, Yamada K, Yoshida N, Remaud GS. Comparison of IRMS and NMR spectrometry for the determination of intramolecular 13C isotope composition: application to ethanol. Talanta. 2012b;99:1035–9.

    Article  Google Scholar 

  • Gleixner G, Schmidt HL. Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates. J Biol Chem. 1997;272(9):5382–7.

    Article  Google Scholar 

  • Hayes JM. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev Mineral Geochem. 2001;43:225–77.

    Article  Google Scholar 

  • Hobbie EA, Werner RA. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 2004;161(2):371–85.

    Article  Google Scholar 

  • Jamin E, Thomas F. SNIF-NMR applications in an economic context: fraud detection in food products. In: Mod. Magn. Reson. Cham: Springer; 2017. p. 1–12.

    Google Scholar 

  • Martin Y-L. A global approach to accurate and automatic quantitative analysis of NMR spectra by complex least-squares curve fitting. J Magn Reson A. 1994;111:1–10.

    Article  Google Scholar 

  • Martin GJ, Martin ML. Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett. 1981;22:3525–8.

    Article  Google Scholar 

  • Menditto A, Patriarca M, Magnusson B. Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur. 2007;12:45–7.

    Article  Google Scholar 

  • Monson KD, Hayes JM. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis. J Biol Chem. 1980;255(23):11435–41.

    Article  Google Scholar 

  • Moussa I, Naulet N, Martin ML, Martin GJ. A site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters: the case of alcohols. J Phys Chem. 1990;94:8303–9.

    Article  Google Scholar 

  • Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134:213–22.

    Article  Google Scholar 

  • Portaluri V, Thomas F, Jamin E, Akoka S, Remaud GS. Authentication of agave products through isotopic intramolecular 13C content of ethanol: optimization and validation of 13C NMR methodology. Food Sci Technol. 2021;1:1316–22.

    Google Scholar 

  • Remaud GS, Giraudeau P, Lesot P, Akoka S. Isotope ratio monitoring by NMR. Part 1: recent advances. In: Webb G, editor. Modern magnetic resonance. Cham: Springer; 2017.

    Google Scholar 

  • Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96(2):609–14.

    Article  Google Scholar 

  • Singh K, Blümich B. NMR spectroscopy with compact instruments. Trends Anal Chem. 2016;63:12–26.

    Article  Google Scholar 

  • Sokolenko S, Jezequel T, Hajjar G, Farjon J, Akoka S, Giraudeau P. Robust 1D NMR lineshape fitting using real and imaginary data in the frequency domain. J Magn Reson. 2019;298:91–100.

    Article  Google Scholar 

  • Tcherkez G. “12C/13C isotope fractionation in plants” in this Handbook of Isotopologue Biogeochemistry. Cham; Springer; 2024.

    Google Scholar 

  • Tcherkez G, Mahé A, Hodges M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 2011;16(9):499–506.

    Article  Google Scholar 

  • Tenailleau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C-NMR. J Magn Reson. 2007;185:50–8.

    Article  Google Scholar 

  • Thibaudeau C, Remaud GS, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;82:5582–90.

    Article  Google Scholar 

  • Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E, Akoka S, Remaud GS, Segebarth N, Guillou C. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J Agric Food Chem. 2010;58:11580–5.

    Article  Google Scholar 

  • Zhang BL, Billault I, Li X, Mabon F, Remaud G, Martin ML. Hydrogen isotopic profile in the characterization of sugars. Influence of the metabolic pathway. J Agric Food Chem. 2002;50:1574–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Akoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gilbert, A., Thomas, F., Akoka, S. (2023). Position-Specific 13C Isotope Analysis by NMR as a Tool for Authentication of Ethanol-Containing Beverages. In: Yoshida, N., Gilbert, A., Foriel, J. (eds) Handbook of Isotopologue Biogeochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7048-8_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7048-8_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7048-8

  • Online ISBN: 978-981-10-7048-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics