Skip to main content

Multiscale Fatigue Crack Growth Modeling for Welded Stiffened Panels

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4434 Accesses

Abstract

The influence of welding residual stresses in stiffened panels on effective stress intensity factor values and fatigue crack growth rate is studied in this paper. Interpretation of relevant effects on different length scales such as dislocation appearance and microstructural crack nucleation and propagation is taken into account using molecular dynamics (MD) simulations as well as a Tanaka-Mura approach for the analysis of the problem. Mode I stress intensity factors (SIFs), KI, were calculated by the finite element method (FEM) using shell elements and the crack tip displacement extrapolation technique. The total SIF value, Ktot, is derived by a part due to the applied load, Kappl, and by a part due to welding residual stresses, Kres. Fatigue crack propagation simulations based on power law models showed that high tensile residual stresses in the vicinity of a stiffener significantly increase the crack growth rate, which is in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

half crack length

a 0 :

initial crack length

a fin :

final crack length

C :

material constant of the Paris equation

CRSS :

critical resolved shear stress

d :

slip band length

da/dN:

crack growth rate

E :

Young’s modulus

\( F\left(\overrightarrow{r},t\right) \) :

interatomic force

F max :

maximum applied force

F min :

minimum applied force

G :

shear modulus

K :

stress intensity factor (SIF)

K appl :

stress intensity factor due to the applied load

K res :

stress intensity factor due to welding residual stresses

K th :

stress intensity factor threshold

K tot :

total stress intensity factor

m :

atomic mass

m :

material constant of the Paris eq.

N :

number of stress cycles for the fatigue crack propagation

N f :

number of stress cycles for fatigue failure

N g :

number of stress cycles required for crack nucleation in a single grain

N ini :

number of stress cycles needed for the initiation of a small crack

R :

stress ratio

R eff :

effective stress intensity factor ratio

\( U\left(\overrightarrow{r} \, ,t\right) \) :

interatomic embedded atom method (EAM) pair potential

W c :

specific fracture energy per unit area

ΔF:

applied force range

ΔK:

stress intensity factor range

ΔKeff:

effective stress intensity factor range

Δσ:

average applied stress range

\( \Delta \overline{\tau} \) :

average shear stress range on the slip band

σ 0 :

yield stress

References

  1. Luo C, Chattopadhyay A. Prediction of fatigue crack initial stage based on a multiscale damage criterion. Int J Fatigue. 2011;33:403–13.

    Article  Google Scholar 

  2. Curtin WA, Deshpande VS, Needleman A, Van der Giessen E, Wallin M. Hybrid discrete dislocation models for fatigue crack growth. Int J Fatigue. 2010;32:1511–20.

    Article  Google Scholar 

  3. White P. Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions. Int J Fatigue. 2012;44:141–50.

    Article  Google Scholar 

  4. Horstemeyer MF, Farkas D, Kim S, Tang T, Potirniche G. Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int J Fatigue. 2010;32:1473–502.

    Article  Google Scholar 

  5. Božić Ž, Schmauder S, Mlikota M, Hummel M. Fatigue Crack Growth Modelling in Welded Stiffened Panels under Cyclic Tension, 13th International Conference on Fracture, Beijing, China. 2013.

    Google Scholar 

  6. Stadler J, Mikulla R, Trebin HR. IMD: a software package for molecular dynamics studies on parallel computers. Int J Mod Phys. 1997;8:1131.

    Article  Google Scholar 

  7. Bonny G, Pasianot RC, Castin N, Malerba L. Ternary Fe-cu-Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Phil Mag. 2009;89:3531–46.

    Article  Google Scholar 

  8. Grottel S, Reina G, Dachsbacher C, Ertl T. Coherent culling and shading for large molecular dynamics visualization. Computer Graphics Forum Proc of EUROVIS 2010. 2010;29(3):953–62.

    Google Scholar 

  9. Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling Simul Mater Sci Eng. 2012;20:085007.

    Article  Google Scholar 

  10. Stukowski A. DXA user manual Version 1.3.4; 2010. http://dxa.ovito.org/README.txt.

  11. Glodez S, Jezernik N, Kramberger J, Lassen T. Numerical modelling of fatigue crack initiation of martensitic steel. Adv Eng Softw. 2010;41(5):823–9.

    Article  MATH  Google Scholar 

  12. Wood WA. Fatigue in aircraft structures. New York: Academic Press; 1956.

    Google Scholar 

  13. Fine ME, Ritchie RO. Fatigue-crack initiation and near-threshold crack growth. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 245–78.

    Google Scholar 

  14. Laird C. Mechanisms and theories of fatigue. In: Meshii M, editor. Fatigue and microstructure. Materials Park: ASM; 1978. p. 149–203.

    Google Scholar 

  15. Klesnil M, Lukas P. Fatigue of metallic materials. New York: Elsevier; 1980. p. 57–80.

    Google Scholar 

  16. Mughrabi H. Rev Phys Appl. 1988;23:367–79.

    Article  Google Scholar 

  17. Mughrabi H. In: Chan KS, Liaw PK, Bellows RS, Zogas T, Soboyejo WO, editors. Fatigue: David L. Davidson symposium. Warrendale: TMS; 2002. p. 3–15.

    Google Scholar 

  18. Davidson DL, Chan KS. Crystallography of fatigue crack initiation in astrology at ambient temperature. Acta Metall. 1989;37(4):1089–97.

    Article  Google Scholar 

  19. Wang QY, Bathias C, Kawagoishi N, Chen Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue. 2002;24(12):1269–74.

    Article  Google Scholar 

  20. Murakami Y, Nomoto T, Ueda T. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions. Fatigue Fract Engng Mater Struct. 2000;23(11):893–902.

    Article  Google Scholar 

  21. Tanaka K, Mura T. A dislocation model for fatigue crack initiation. J Appl Mech. 1981;48:97–103.

    Article  MATH  Google Scholar 

  22. Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A. 1982;13(1):117–23.

    Article  Google Scholar 

  23. Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading. Int J Fatigue. 2006;28(9):963–71.

    Article  Google Scholar 

  24. Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue & Fracture of Engineering Materials & Structures. 2010;33:714–23.

    MATH  Google Scholar 

  25. Broek D. The practical use of fracture mechanics. Dordrecht: Kluwer Academic Publishers; 1989.

    Book  Google Scholar 

  26. Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85:528–34.

    Article  Google Scholar 

  27. Dexter RJ, Pilarski PJ, Mahmoud HN. Analysis of crack propagation in welded stiffened panels. Int J Fatigue. 2003;25:1169–74.

    Article  Google Scholar 

  28. Mahmoud HN, Dexter RJ. Propagation rate of large cracks in stiffened panels under tension loading. Mar Struct. 2005;18:265–88.

    Article  Google Scholar 

  29. Sumi Y, Božić Ž, Iyama H, Kawamura Y. Multiple fatigue cracks propagating in a stiffened panel. Journal of the Society of Naval Architects of Japan. 1996;179:407–12.

    Article  Google Scholar 

  30. Elber W. The significance of fatigue crack closure, Damage tolerance in aircraft structures. ASTM STP 486. American Society for Testing & Materials; 1971. p. 230–242.

    Google Scholar 

  31. Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ. Crack opening displacement and the rate of fatigue crack growth. Int J Fract Mech. 1972;8:209–19.

    Article  Google Scholar 

  32. Swanson Analysis System (2009). Inc. ANSYS User’s Manual Revision 11.0.

    Google Scholar 

  33. Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys. 2014;47:025303.

    Article  Google Scholar 

  34. Tapasa K, Bacon DJ, Osetsky YN. Simulation of dislocation glide in dilute Fe-cu alloys. Materials Science & Engineering A. 2005;400-401:109–13.

    Article  Google Scholar 

  35. Kohler C, Kizler P, Schmauder S. Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition. Model Simul Mater Sci Eng. 2005;13:35–45.

    Article  Google Scholar 

  36. Molnar D, et al.. Unpublished research. 2014.

    Google Scholar 

  37. Naveen Kumar N, Durgaprasad PV, Dutta BK, Dey GK. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach. Comput Mater Sci. 2012;53:258–67.

    Article  Google Scholar 

  38. Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simul. Mater. Sci. Eng. 2003;11:745–53.

    Article  Google Scholar 

  39. Nakai Y. Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy. Mater Sci Res Int. 2001;7(2):1–9.

    Google Scholar 

  40. Zabett A, Plumtree A. Microstructural effects on the small fatigue crack behaviour of an aluminum alloy plate. Fatigue & Fracture of Engineering Materials & Structures. 1995;18(7–8):801–9.

    Google Scholar 

  41. Taylor D, Knott JF. Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue & Fracture of Engineering Materials & Structures. 1981;4(2):147–55.

    Article  Google Scholar 

  42. Miller KJ. The behaviour of short fatigue cracks and their initiation part II-A general summary. Fatigue & Fracture of Engineering Materials & Structures. 1987;10(2):93–113.

    Article  Google Scholar 

  43. Bao R, Zhang X, Yahaya NA. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods. Eng Fract Mech. 2010;77:2550–66.

    Article  Google Scholar 

  44. Croatian Register of Shipping. Rules for the Classification of Ships, Part 25 – Metallic Materials. 2012.

    Google Scholar 

  45. Faulkner D. A review of effective plating for use in the analysis of stiffened plating in bending and compression. J Ship Res. 1975;19:1–17.

    Google Scholar 

  46. Barsoum RS. On the use of Isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng. 1976;10:25–37.

    Article  MATH  Google Scholar 

  47. Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. Int J Numer Methods Eng. 1975;9:495–507.

    Article  MATH  Google Scholar 

  48. Božić Ž, Mlikota M, Schmauder S. Application of the ΔK, ΔJ and ΔCTOD parameters in fatigue crack growth modelling, Technical. Gazette. 2011;18(3):459–66.

    Google Scholar 

  49. Božić Ž, Schmauder S, Mlikota M. Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key Eng Mater. 2012;488-489:525–8.

    Article  Google Scholar 

  50. Liu Y, Mahadevan S. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. Eng Fract Mech. 2007;74:332–45.

    Article  Google Scholar 

  51. Glinka G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude load, Fracture mechanics, ASTM STP 677, American Society for Testing and Materials; 1979. p. 198–214.

    Google Scholar 

  52. Servetti G, Zhang X. Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Engng Fract Mech. 2009;76:1589–602.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. Schm 746/132-1 and as part of the Collaborative Research Centre SFB 716 at the University of Stuttgart and by the Croatian Science Foundation Grant No. 120-0362321-2198. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ž. Božić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Božić, Ž., Schmauder, S., Mlikota, M., Hummel, M. (2019). Multiscale Fatigue Crack Growth Modeling for Welded Stiffened Panels. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_73

Download citation

Publish with us

Policies and ethics