Skip to main content

Fracture Nanomechanics

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4471 Accesses

Abstract

This chapter reviews recent advances in experimental studies on fracture mechanics of small materials on nanometer scales. In particular, experimental systems and some testing methods developed by the current authors are introduced for investigating the fracture behavior of interface in nanoscale multilayered components and low-dimensional single crystalline materials, and main experimental results are presented as well. The experimental studies discussed are: (1) crack initiation from the free edge of interface and its mechanical criterion, (2) modulation of the location of crack initiation and the mode mixity for interface cracking with different types of cantilever specimens, (3) evaluation of the effect of microscopic structure on the interface cracking by an inverted-T-shaped cantilever method, (4) creep crack initiation at an interface edge in nanoscale components, (5) fatigue fracture behavior of interface and the environmental effect, (6) novel resonant vibration based high-cycle fatigue method and the fatigue properties of nano-metals, and (7) evaluation of deformation and fracture properties of nanoscale single crystalline materials. From the obtained results, authors pointed out the applicability of conventional fracture mechanics in nanoscale components. Meanwhile, the main challenges and difficulties in experimental studies on the fracture behavior of nanoscale materials are demonstrated, and several future research topics are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubio-Bollinger G, Bahn SR, Agrait N, Jacobsen KW, Vieira S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys Rev Lett. 2001;87(2):026101.

    Article  Google Scholar 

  2. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett. 1998;73(17):2447–9.

    Article  Google Scholar 

  3. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  Google Scholar 

  4. Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 2005;53(15):4065–77.

    Article  Google Scholar 

  5. Kitamura T, Sumigawa T, Hirakata H, Shimada T. Fracture nanomechanics. Singapore: Pan Stanford Publishing Pte. Ltd; 2016.

    Book  Google Scholar 

  6. Espinosa HD, Prorok BC, Fischer M. A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J Mech Phys Solids. 2003;51(1):47–67.

    Article  Google Scholar 

  7. Xiang Y, Chen X, Vlassak JJ. Plane-strain bulge test for thin films. J Mater Res. 2005;20(9):2360–70.

    Article  Google Scholar 

  8. Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002;50(1):23–38.

    Article  Google Scholar 

  9. Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B. 2006;73(245410)

    Google Scholar 

  10. Rice JR. Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech. 1988;55(1):98–103.

    Article  Google Scholar 

  11. Akisanya AR, Meng CS. Initiation of fracture at the interface corner of bi-material joints. J Mech Phys Solids. 2003;51(1):27–46.

    Article  MATH  Google Scholar 

  12. Kitamura T, Shibutani T, Ueno T. Crack initiation at free edge of interface between thin films in advanced LSI. Eng Fract Mech. 2002;69(12):1289–99.

    Article  Google Scholar 

  13. Marshall DB, Evans AG. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J Appl Phys. 1984;56(10):2632–8.

    Article  Google Scholar 

  14. Sekiguchi A, Koike J. Evaluation of Interface adhesion strength in Cu/(Ta–x% N, Ta/TaN)/SiO2/Si by Nanoscratch test. Jpn J Appl Phys. 2008;47(2):1042–9.

    Article  Google Scholar 

  15. Dauskardt RH, Lane M, Ma Q, Krishna N. Adhesion and debonding of multi-layer thin film structures. Eng Fract Mech. 1998;61(1):141–62.

    Article  Google Scholar 

  16. Xie D, Waas AM, Shahwan KW, Schroeder JA, Boeman RG. Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading. Eng Fract Mech. 2005;27(16):2487–504.

    Article  Google Scholar 

  17. Hirakata H, Takahashi Y, Matsumoto S, Kitamura T. Dominant stress region for crack initiation at interface edge of microdot on a substrate. Eng Fract Mech. 2006;73(17):2698–709.

    Article  Google Scholar 

  18. Hirakata H, Takahashi Y, Truong DV, Kitamura T. Role of plasticity on interface crack initiation from a free edge and propagation in a nano-component. Int J Fract. 2007;145:261–71.

    Article  Google Scholar 

  19. Sumigawa T, Shishido T, Murakami T, Kitamura T. Interface crack initiation due to nano-scale stress concentration. Mater Sci Eng A. 2010;527(18–19):4796–803.

    Article  Google Scholar 

  20. Takahashi Y, Hirakata H, Kitamura T. Quantitative evaluation of plasticity of a ductile nano-component. Thin Solid Films. 2008;516(8):1925–30.

    Article  Google Scholar 

  21. Sumigawa T, Shishido T, Murakami T, Iwasaki T, Kitamura T. Evaluation on plastic deformation property of copper nano-film by nano-scale cantilever specimen. Thin Solid Films. 2010;518(21):6040–7.

    Article  Google Scholar 

  22. Yan Y, Sumigawa T, Guo L, Kitamura T. Strength evaluation of a selected interface in multi-layered nano-material. Eng Fract Mech. 2014;116:204–12.

    Article  Google Scholar 

  23. Hutchinson JW, Suo Z. Mixed mode cracking in layered materials. In: Hutchinson JW, Wu TY, editors. Advances in applied mechanics. Cambridge: Academic; 1992.

    Google Scholar 

  24. Kishimoto K, Yan Y, Sumigawa T, Kitamura T. Mixed-mode crack initiation at the edge of Cu/Si interface due to nanoscale stress concentration. Eng Fract Mech. 2012;96:72–81.

    Article  Google Scholar 

  25. Elices M, Guinea GV, Gomez J, Planas J. The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech. 2002;69(2):137–63.

    Article  Google Scholar 

  26. Yan Y, Sumigawa T, Shang F, Kitamura T. Cohesive zone criterion for cracking along the Cu/Si interface in nanoscale components. Eng Fract Mech. 2011;78(17):2935–46.

    Article  Google Scholar 

  27. Sumigawa T, Nakano T, Kitamura T. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking. Thin Solid Films. 2013;531:362–72.

    Article  Google Scholar 

  28. Kohda S. Introduction to material physics. Tokyo: Corona Publishing Co., Ltd; 1964.

    Google Scholar 

  29. Hirakata H, Hirako T, Takahashi Y, Matsuoka Y, Kitamura T. Creep crack initiation at a free edge of an interface between submicron thick elements. Eng Fract Mech. 2008;75(10):2907–20.

    Article  Google Scholar 

  30. Liu W, Bayerlein M, Mughrabi H, Day A, Quested PN. Crystallographic features of intergranular crack initiation in fatigued copper polycrystals. Acta Metall Mater. 1992;40(7):1763–71.

    Article  Google Scholar 

  31. Sumigawa T, Murakami T, Shishido T, Kitamura T. Cu/Si interface fracture due to fatigue of copper film in nanometer scale. Mater Sci Eng A. 2010;527(24–25):6518–23.

    Article  Google Scholar 

  32. Sumigawa T, Kitamura T, Murakami T. Fatigue strength of the Cu/Si interface in nano-components. Mater Sci Eng A. 2011;528(15):5158–63.

    Article  Google Scholar 

  33. Thompson AW, Backofen WA. The effect of grain size on fatigue. Acta Metall. 1971;19(7):597–606.

    Article  Google Scholar 

  34. Pecht M, Lall P, Whelan SJ. Temperature dependence of microelectronic device failures. Qual Reliab Eng Int. 1990;6(4):275–84.

    Article  Google Scholar 

  35. Osenbach JW. Corrosion-induced degradation of microelectronic devices. Semicond Sci Technol. 1996;11(2):155–62.

    Article  Google Scholar 

  36. Yan Y, Sumigawa T, Kitamura T. Effect of environment on fatigue strength of Cu/Si interface in nanoscale components. Mater Sci Eng A. 2012;556(30):147–54.

    Article  Google Scholar 

  37. Sumigawa T, Matsumoto K, Fang H, Kitamura T. Formation of slip bands in poly-crystalline nano-copper under high-cycle fatigue of fully-reversed loading. Mater Sci Eng A. 2014;608:221–8.

    Article  Google Scholar 

  38. Sumigawa T, Shiohara R, Matsumoto K, Kitamura T. Characteristic features of slip bands in submicron single-crystal gold component produced by fatigue. Acta Mater. 2013;61(7):2692–700.

    Article  Google Scholar 

  39. Ma BT, Laird C. Overview of fatigue behavior in copper single crystals-I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Acta Metall. 1989;37(2):325–36.

    Article  Google Scholar 

  40. Melisova D, Weiss B, Stickler R. Nucleation of persistent slip bands in Cu single crystals under stress controlled cycling. Scr Mater. 1997;36(9):1061–6.

    Article  Google Scholar 

  41. Li P, Li SX, Wang ZG, Zhang ZF. Dislocation arrangements in cyclically deformed. Mater Sci Eng A. 2010;527(23):6244–7.

    Article  Google Scholar 

  42. Forsyth PJE. Exudation of material from slip bands at the surface of fatigued crystals of an aluminium–copper alloy. Nature. 171:172–3.

    Article  Google Scholar 

  43. Basinski ZS, Pascual R, Basinski SJ. Low amplitude fatigue of copper single crystals-I. The role of the surface in fatigue failure. Acta Metall. 1983;31(4):591–602.

    Article  Google Scholar 

  44. McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 1998;13(5):1300–6.

    Article  Google Scholar 

  45. Sumigawa T, Yan Y, Nakano T, Kitamura T. Development of a tensile test method on nanorods. J Soc Mater Sci Jpn. 2013;62(11):695–701.

    Article  Google Scholar 

  46. Andrade ENC, Henderson C. The mechanical behavior of single crystals of certain face-centered cubic metals. Philos Trans R Soc Lond Ser A. 1951;244(880):177–203.

    Article  Google Scholar 

  47. Brenner SS. Plastic deformation of copper and silver whiskers. J Appl Phys. 1957;28(9):1023–6.

    Article  Google Scholar 

  48. Moser B, Wasmer K. Strength and fracture of Si micropillars: a new scanning electron microscopy-based micro-compression test. J Mater Res. 2007;22(4):1004–11.

    Article  Google Scholar 

  49. Sumigawa T, Ashida S, Tanaka S, Sanada K, Kitamura T. Fracture toughness of silicon in nanometer-scale singular stress field. Eng Fract Mech. 2015;150:161–7.

    Article  Google Scholar 

  50. Dukino RD, Swain MV. Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters. J Am Ceram Soc. 1992;75(12):3299–304.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI (Grant Numbers 25000012 and 15H02210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kitamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yan, Y., Sumigawa, T., Guo, L., Kitamura, T. (2019). Fracture Nanomechanics. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_6

Download citation

Publish with us

Policies and ethics