Skip to main content

Crack-Dislocation Interactions Ahead of a Crack Tip

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4536 Accesses

Abstract

An overview of interactions of crack and dislocations emitted from the crack is provided with particular emphasis on theoretical approaches. Several existing models, such as due to Bilby, Cottrell and Swinden, Burns and Majumdar, Lin and Thomson, and Pande and Masamura, are presented. These models provide a formalism that gives the equilibrium positions of dislocations in an array ahead of crack tip, from which important parameters such as plastic zone size, dislocation-free zone, and dislocation stress intensity factor can be determined, which are useful in discussing the phenomenon of fatigue. Following these overviews, the experimental results on the dislocation-free zone and plastic zone observed ahead of the cracks in aluminum using transmission electron microscopy are presented and compared with the existing models. The experimentally measured values of these zones are shown to be in reasonably good agreement with theoretical models of crack-dislocation configuration based on a continuum distribution of dislocations ahead of the crack. However, these models fail to predict the total number of emitted dislocations, underlying the need for better analytical models. We also provide a brief overview on crack tip dislocation behavior under fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohr SM, Narayan J. Electron microscope observation of shear cracks in stainless steel single crystals. Philos Mag. 1980;41(1):81–9.

    Article  Google Scholar 

  2. Kobayashi S, Ohr SM. Insitu observations of the formation of plastic zone ahead of a crack tip in copper. Scr Metall. 1981;15(3):343–8.

    Article  Google Scholar 

  3. Kobayashi S, Ohr SM. In situ fracture experiments in BCC metals. Philos Mag A. 1980;42(6):763–72.

    Article  Google Scholar 

  4. Horton JA, Ohr SM. Determination of emmision condition from the experiments and theory. Scr Metall. 1982;16(5):621–6.

    Article  Google Scholar 

  5. Horton JA, Ohr SM. TEM observations of dislocation emission at crack tip in aluminum. J Mater Sci. 1982;17(11):3140–8.

    Article  Google Scholar 

  6. Ohr SM. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng. 1985;72(1):1–35.

    Article  Google Scholar 

  7. Majumdar B, Burns S. Crack tip shielding-anelastic theory of dislocation and dislocation arrays near a sharp crack. Acta Metall. 1981;29(4):579–88.

    Article  Google Scholar 

  8. Majumdar B, Burns S. A Griffith crack shielded by a dislocation pile-up. Int J Fract Mech. 1983;21(3):229–40.

    Article  Google Scholar 

  9. Chang S, Ohr SM. Dislocation-free zone model of fracture. J Appl Physiol. 1981;52(12):7174–81.

    Article  Google Scholar 

  10. Dai SH, Li JCM. Dislocation free zone at the crack tip. Scr Metall. 1982;16(2):183–8.

    Article  Google Scholar 

  11. Thomson R. Physics of fracture. J Phys Chem Solids. 1987;48(11):965–83.

    Article  Google Scholar 

  12. Sadananda K, Glinka G. Dislocation processes that affect kinetics of fatigue crack growth. Philos Mag. 2005;85(2–3):189–203.

    Article  Google Scholar 

  13. Bilby B, Cottrell A, Swinden K. The spread of plastic yield from a notch. Proc Roy Soc A. 1963;272(1350):304–14.

    Google Scholar 

  14. Lin IH, Thomson R. Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 1986;34(2):187–206.

    Article  Google Scholar 

  15. Pande CS, Masumura RA, Chou YT. Shielding of crack tips by inclined pile-ups of dislocations. Acta Metall. 1988;36(1):49–54.

    Article  Google Scholar 

  16. Weertman J. Theory of fatigue crack growth based on a BCS crack theory with work hardening. Int J Fract. 1973;9(2):125–31.

    Article  Google Scholar 

  17. Park CG, Lee CS, Chang YW. In situ TEM observations of crack tip dislocation behaviors under a mixed mode loading. In: Mechanical behaviour of materials – VI; Proceedings of the 6th international conference, Kyoto, July 29–Aug 2; 1991. vol. 4 (A93–40776 16–39), p. 3–9.

    Google Scholar 

  18. Ding Y, Wang C, Li M, Wang W. In situ TEM observation of microcrack nucleation and propagation in pure tin solder. Mater Sci Eng B. 2006;127(1):62–9.

    Article  Google Scholar 

  19. Weertman J. Fracture mechanics-unified view for Griffith-Irwin-Orowan cracks. Acta Metall. 1978;26(11):1731–8.

    Article  Google Scholar 

  20. Weertman J. Fracture stress obtained from the elastic crack tip enclave model. J Mater Sci. 1980;15(5):1306–10.

    Article  Google Scholar 

  21. Weertman J, Lin IH, Thomson R. Double slip plane crack model. Acta Metall. 1983;31(4):473–82.

    Article  Google Scholar 

  22. Weertman J. Dislocation emmision into a mode III plastic zone. Scr Metall. 1986;20(11):1483–8.

    Article  Google Scholar 

  23. Weertman J. Complete crack shielding. J Appl Mech. 1991;58(4):1107–8.

    Article  Google Scholar 

  24. Rice JR, Thomson R. Ductile versus brittle behavior of crystals. Philos Mag. 1974;29(1):73–97.

    Article  Google Scholar 

  25. Muskhelishvili N. Singular integral equations. Groningen: P. Noordhoof Ltd; 1953.

    MATH  Google Scholar 

  26. Zhang TY, Tong P, Ouyang H, Lee S. Interaction of an edge dislocation with a wedge crack. J Appl Physiol. 1995;78(8):4873–80.

    Article  Google Scholar 

  27. Pande CS, Masumura RA, Chou YT. Shielding of crack tips by critical parameters for fatigue damage. Int J Fatigue. 2001;23(10–12):1170–4.

    Google Scholar 

  28. Goswami R, Pande CS. Investigations of crack-dislocation interactions ahead of mode-III crack. Mater Sci Eng A. 2015;627(03):217–22.

    Article  Google Scholar 

  29. Zacharopoulos N, Srolovitz DJ, Lesar R. Dynamic simulation of dislocation microstructures in mode III cracking. Acta Mater. 1997;45:3745–63.

    Article  Google Scholar 

  30. Pande CS, Imam MA, Srivatsan TS. Some thoughts, in fatigue of materials II: Advances and emergences in understanding. In: Srivatsan TS, Imam MA and Szini Vasan R (eds), Fundamentals of fatigue crack initiation and propagation. John Wiley & Sons, Inc., Hoboken, NJ; 2012. https://doi.org/10.1002/9781118533383.ch1

  31. Basinski ZS, Basinski SJ. Low amplitude fatigue of copper single crystals. Acta Metall. 1985;33(7):1319–27.

    Article  Google Scholar 

  32. Mott NF. A theory of the origin of fatigue cracks. Acta Metall. 1958;6(3):195–7.

    Article  Google Scholar 

  33. Antonopoulos JG, Brown LM, Winter AT. Vacancy dipoles in fatigued copper. Philos Mag. 1976;34(4):549–63.

    Article  Google Scholar 

  34. Differt K, Essmann U, Mughrabi H. A model of extrusions and intrusions infatigued metals – II. Surface roughening by random irreversible slip. Philos Mag. 1986;54(2):237–58.

    Article  Google Scholar 

  35. Neumann P. Coarse slip model of fatigue. Acta Metall. 1969;17(9):1219–25.

    Article  Google Scholar 

  36. Riemelmoser FO, Gumbsch P, Pippan R. Dislocation modeling of fatigue cracks: an overview. Mater Trans. 2001;42(1):2–13.

    Article  Google Scholar 

  37. Riemelmoser FO, Pippan R. Investigation of a growing fatigue crack by means of a discrete dislocation model. Mater Sci Eng A. 1997;135:234–6.

    Google Scholar 

  38. Riemelmoser FO, Pippan R, Stuwe HP. A comparison of a discrete dislocation model and a continuous description of cyclic crack tip plasticity. Int J Fract. 1997;85(2):157–68.

    Article  Google Scholar 

  39. Pippan R. Dislocation emission and fatigue crack growth threshold. Acta Metall Mater. 1991;39(3):255–62.

    Article  Google Scholar 

  40. Wilkinson AJ, Roberts SG, Hirsch PB. Modelling the threshold conditions for propagation of stage-I fatigue cracks. Acta Mater. 1998;46(2):379–90.

    Article  Google Scholar 

  41. Laird C, Smith GC. Crack propagation in high stress fatigue. Philos Mag. 1962;7(77):847–57.

    Article  Google Scholar 

  42. Katagiri K, Omura A, Koyanagi K, Awatani J, Shiraishi T, Kaneshiro H. Early stage in fatigued crack tip dislocation morphology in fatigued copper. Metall Trans A. 1977;8A:1769–73.

    Article  Google Scholar 

  43. Pham MS, Solenthaler C, Janssens KGF, Holdsworth SR. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel. Mater Sci Eng A. 2011;528:3261–9.

    Article  Google Scholar 

  44. Miekk-Oja HM, Lindroos VK. The formation of dislocation networks. Surf Sci. 1972;31:422–55.

    Article  Google Scholar 

  45. Lindroos VK, Miekk-Oja HM. Knitting of dislocation networks by means of stress-induced climb in aluminium-magnesium alloy. Philos Mag. 1968;17:119–33.

    Article  Google Scholar 

  46. Grosskreutz JC. Formation of substructure in aluminum during alternate plastic strain. In: Proceedings of the fifth international congress for electron microscopy. New York: Academic; 1962. p. J-9.

    Google Scholar 

  47. McEvily AJ, Boettner RC. On fatigue crack propagation in FCC metals. Acta Metall. 1963;11(7):725–43.

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the Office of Naval Research (ONR) through 6.1 program at Naval Research Laboratory (NRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goswami, R., Pande, C.S. (2019). Crack-Dislocation Interactions Ahead of a Crack Tip. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_52

Download citation

Publish with us

Policies and ethics