Advertisement

In situ Transmission Electron Microscopy Investigation of Dislocation Interactions

  • Josh Kacher
  • Ben P. Eftink
  • Ian M. Robertson
Living reference work entry

Abstract

This chapter provides a broad overview of dislocation interactions investigated via in situ transmission electron microscopy (TEM) deformation experiments. The discussion of these interactions is divided according to the interaction of interest, with the first section exploring the mechanics and energetics governing dislocation nucleation, propagation, and multiplication. The following two sections investigate dislocation interactions with isolated defects and defect fields, including interactions involving irradiation-induced defects, solute atoms, and second-phase particles. The final section discusses dislocation–grain boundary interactions with a focus on understanding how the local grain boundary structure and surrounding microstructure dictate the dislocation transfer process. Two unique advantages of TEM imaging for dislocation interactions will be highlighted throughout this chapter: the ability to capture dislocation interactions at sufficient spatial and temporal resolution to resolve complex interactions, and the ability to resolve salient features of the dislocation interactions using diffraction contrast imaging. This second advantage is used to characterize structural and geometrical factors influencing dislocation interactions, including the dislocation Burgers vector, line direction, and slip plane, crystallographic orientation, and boundary habitat planes.

Keywords

Transmission electron microscopy In situ deformation Dislocations Plasticity Strengthening mechanisms 

Notes

Acknowledgments

For the preparation of this manuscript, the authors acknowledge financial support from Georgia Tech. (JK), Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the US Department of Energy (BPE), and US Department of Energy under award No. DE-FG02–08 ER46525 (IMR). Experimental work from the Robertson group was supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science, under award No. DE-FG02–08 ER46525 (radiation damage work by Cui) and US Department of Energy Office of Basic Energy Sciences, Division of Materials Science, under award No. DEFG-02-07ER46443 (slip transfer studies by Kacher and, partially, the study by Eftink on deformation across interfaces).

References

  1. 1.
    Hirsch PB, Horne RW, Whelan MJ. Direct observations of the arrangement and motion of dislocations in aluminium. Philos Mag. 1956;86(29):4553–72.Google Scholar
  2. 2.
    Herring C, Galt JK. Elastic and plastic properties of very small metal samples. Phys Rev. 1952;85:1060–2.CrossRefGoogle Scholar
  3. 3.
    Chen LY, He M-r, Shin J, Richter G, Gianola DS. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater. 2015;14(7):707–13.CrossRefGoogle Scholar
  4. 4.
    Lu Y, Song J, Huang JY, Lou J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011;4(12):1261–7.CrossRefGoogle Scholar
  5. 5.
    Oh SH, Legros M, Kiener D, Dehm G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater. 2009;8(2):95–100.CrossRefGoogle Scholar
  6. 6.
    Li N, Yadav SK, Liu XY, Wang J, Hoagland RG, Mara N, Misra A. Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations. Sci Rep. 2015;5:15813.CrossRefGoogle Scholar
  7. 7.
    Minor AM, Lilleodden ET, Stach EA, Morris JW. Direct observations of incipient plasticity during nanoindentation of Al. J Mater Res. 2004;19:176–82.CrossRefGoogle Scholar
  8. 8.
    Caillard D, Martin JL. Some aspects of cross-slip mechanisms in metals and alloys. J Phys. 1989;50(18):2455–73.CrossRefGoogle Scholar
  9. 9.
    Caillard D, Rautenberg M, Feaugas X. Dislocation mechanisms in a zirconium alloy in the high-temperature regime: an in situ TEM investigation. Acta Mater. 2015;87:283–92.CrossRefGoogle Scholar
  10. 10.
    Clouet E, Caillard D, Chaari N, Onimus F, Rodney D. Dislocation locking versus easy glide in titanium and zirconium. Nat Mater. 2015;14:931–7.CrossRefGoogle Scholar
  11. 11.
    Couret A, Caillard D. An in situ study of prismatic glide in magnesium. I. The rate controlling mechanism. Acta Metall. 1985;33(8):1447–54.CrossRefGoogle Scholar
  12. 12.
    Couret A, Caillard D. An in situ study of prismatic glide in magnesium. II. Microscopic activation parameters. Acta Metall. 1985;33(8):1455–62.CrossRefGoogle Scholar
  13. 13.
    Farenc S, Caillard D, Couret A. An in situ study of prismatic glide in α titanium at low temperatures. Acta Metall Mater. 1993;41(9):2701–9.CrossRefGoogle Scholar
  14. 14.
    Naka S, Lasalmonie A, Costa P, Kubin LP. The low-temperature plastic deformation of -titanium and the core structure of a-type screw dislocations. Philos Mag A. 1988;57(5):717–40.CrossRefGoogle Scholar
  15. 15.
    Kacher J, Robertson IM. In situ TEM characterization of dislocation interactions in α-titanium. Philos Mag. 2016;96(14):1437–47.CrossRefGoogle Scholar
  16. 16.
    Appel F, Bethge H, Messerschmidt U. Dislocation motion and multiplication at the deformation of MgO single crystals in high voltage electron microscope. Phys Status Solidi. 1977;42:61–71.CrossRefGoogle Scholar
  17. 17.
    Werner M, Bartsch M, Messerschmidt U, Baither D. TEM observations of dislocation motion in polycrystalline silicon during in situ straining in the high voltage electron microscope. Phys Status Solidi A. 1994;146(1):133–43.CrossRefGoogle Scholar
  18. 18.
    Baither D, Baufeld B, Messerschmidt U, Bartsch M. HVEM high-temperature in situ straining experiments on cubic zirconia single crystals. Mater Sci Eng A. 1997;233:75–87.CrossRefGoogle Scholar
  19. 19.
    Messerschmidt U, Bartsch M. Generation of dislocations during plastic deformation. Mater Chem Phys. 2003;81(2–3):518–23.CrossRefGoogle Scholar
  20. 20.
    Caillard D. Dynamic strain ageing in iron alloys: the shielding effect of carbon. Acta Mater. 2016;112:273–84.CrossRefGoogle Scholar
  21. 21.
    Robertson IM. The effect of hydrogen on dislocation dynamics. Eng Fract Mech. 2001;68(6):671–92.CrossRefGoogle Scholar
  22. 22.
    Shih DS, Robertson IM, Birnbaum HK. Hydrogen embrittlement of alpha-titanium – in situ TEM studies. Acta Metall. 1988;36(1):111–24.CrossRefGoogle Scholar
  23. 23.
    Birnbaum HK, Sofronis P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture. Mater Sci Eng A Struct Mater Prop Microstruct Process. 1994;A176(1–2):191–202.CrossRefGoogle Scholar
  24. 24.
    Kacher J, Mishra RK, Minor AM. Multiscale characterization of dislocation processes in Al 5754. Philos Mag. 2015;95(20):2198–209.CrossRefGoogle Scholar
  25. 25.
    Bartsch M, Wasilkowska A, Czyrska-Filemonowicz A, Messerschmidt U. Dislocation dynamics in the oxide dispersion strengthened alloy INCOLOY MA956. Mater Sci Eng A Struct Mater Prop Microstruct Process. 1999;272(1):152–62.CrossRefGoogle Scholar
  26. 26.
    Haussler D, Bartsch M, Messerschmidt U, Reppich B. HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754. Acta Mater. 2001;49:3647–57.CrossRefGoogle Scholar
  27. 27.
    Behr R, Mayer J, Arzt E. TEM investigations of the superdislocations and their interaction with particles in dispersion strengthened intermetallics. Intermetallics. 1999;7(3–4):423–36.CrossRefGoogle Scholar
  28. 28.
    Yeh YH, Nakashima H, Kurishita H, Goto S, Yoshinaga H. Threshold stress for high-temperature creep in particle strengthened Al-1.5 vol-percent-Be alloys. Mater Trans Jim. 1990;31(4):284–92.CrossRefGoogle Scholar
  29. 29.
    Praud M, Mompiou F, Malaplate J, Caillard D, Garnier J, Steckmeyer A, Fournier B. Study of the deformation mechanisms in a Fe-14% Cr ODS alloy. J Nucl Mater. 2012;428(1–3):90–7.CrossRefGoogle Scholar
  30. 30.
    Nogiwa K, Yamamoto T, Fukumoto K, Matsui H, Nagai Y, Yubuta K, Hasegawa M. In situ TEM observation of dislocation movement through the ultrafine obstacles in an Fe alloy. J Nucl Mater. 2002;307:946–50.CrossRefGoogle Scholar
  31. 31.
    Foreman AJE, Makin MJ. Dislocation movement through random arrays of obstacles. Philos Mag. 1966;14(131):911–24.CrossRefGoogle Scholar
  32. 32.
    Tougou K, Nogiwa K, Tachikawa K, Fukumoto K. Tensile testing study of dynamic interactions between dislocations and precipitate in vanadium alloys. J Nucl Mater. 2013;442(1–3):S350–3.CrossRefGoogle Scholar
  33. 33.
    Cole JI, Bruemmer SM. Post-irradiation deformation characteristics of heavy-ion irradiated 304L SS. J Nucl Mater. 1995;225:53–8.CrossRefGoogle Scholar
  34. 34.
    Sharp JV. Correlation between cleared channels and surface slip steps in neutron irradiated copper crystals. Radiat Eff. 1972;14(1–2):71–5.CrossRefGoogle Scholar
  35. 35.
    Tucker RP, Wechsler MS, Ohr SM. Dislocation channeling in neutron-irradiated niobium. J Appl Phys. 1969;40(1):400–8.CrossRefGoogle Scholar
  36. 36.
    Foreman AJE, Sharp JV. A mechanism for the sweeping-up of loops by glide dislocations during deformation. Philos Mag. 1969;19:931–7.CrossRefGoogle Scholar
  37. 37.
    Kacher J, Liu GS, Robertson IM. In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels. Micron. 2012;43(11):1099–107.CrossRefGoogle Scholar
  38. 38.
    Briceno M, Fenske J, Dadfarnia M, Sofronis P, Robertson IM. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel. J Nucl Mater. 2011;409(1):18–26.CrossRefGoogle Scholar
  39. 39.
    Robach JS, Robertson IM, Wirth BD, Arsenlis A. In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos Mag. 2003;83(8):955–67.CrossRefGoogle Scholar
  40. 40.
    Suzuki M, Fujimura A, Sato A, Nagakawa J, Yamamoto N, Shiraishi H. In situ deformation of proton-irradiated molybdenum in a high-voltage electron microscope. Philos Mag A. 1991;64:395–411.CrossRefGoogle Scholar
  41. 41.
    Kacher J, Cui B, Robertson IM. In situ and tomographic characterization of damage and dislocation processes in irradiated metallic alloys by transmission electron microscopy. J Mater Res. 2015;30(9):1202–13.CrossRefGoogle Scholar
  42. 42.
    Suzuki, M., A. Fujimura, A. Sato, J. Nagakawa, N. Yamamoto, and H. Shiraishi. In situ deformation of proton-irradiated metals. In New directions and future aspects of HVEM, October 8, 1990 – October 10, 1990. 1991. Osaka, Japan.Google Scholar
  43. 43.
    Suzuki M, Sato A, Mori T, Nagakawa J, Yamamoto N, Shiraishi H. Insitu deformation and unfaulting of interstitial loops in proton-irradiated steels. Philos Mag A. 1992;65(6):1309–26.CrossRefGoogle Scholar
  44. 44.
    Jin H-H, Shin C, Kwon J. Observation of interaction behavior between microstructural defects and dislocation by in situ strain TEM examination. J Nucl Mater. 2013;442(1–3, Supplement 1):S851–5.CrossRefGoogle Scholar
  45. 45.
    Drouet J, Dupuy L, Onimus F, Mompiou F. A direct comparison between in-situ transmission electron microscopy observations and dislocation dynamics simulations of interaction between dislocation and irradiation induced loop in a zirconium alloy. Scr Mater. 2016;119:71–5.CrossRefGoogle Scholar
  46. 46.
    Matsukawa Y, Osetsky YN, Stoller RE, Zinkle SJ. The collapse of stacking-fault tetrahedra by interaction with gliding dislocations. Mater Sci Eng A. 2005;400:366–9.CrossRefGoogle Scholar
  47. 47.
    Robertson IM, Robach JS, Lee HJ, Wirth BD. Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 2006;54(6):1679–90.CrossRefGoogle Scholar
  48. 48.
    Briceno M, Kacher J, Robertson IM. Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature. J Nucl Mater. 2013;433(1–3):390–6.CrossRefGoogle Scholar
  49. 49.
    Dougherty LM, Robertson IM, Vetrano JS. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy. Acta Mater. 2003;51:4367–78.CrossRefGoogle Scholar
  50. 50.
    Clark BG, Robertson IM, Dougherty LM, Ahn DC, Sofronis P. High-temperature dislocation-precipitate interactions in Al alloys: an in situ transmission electron microscopy deformation study. J Mater Res. 2005;20:1792–801.CrossRefGoogle Scholar
  51. 51.
    Kacher J, Eftink B, Cui B, Robertson IM. Dislocation interactions with grain boundary interactions. Curr Opinion Solid State Mater Sci. 2014;18:227–43.CrossRefGoogle Scholar
  52. 52.
    Shen Z, Wagoner RH, Clark WAT. Dislocation and grain boundary interactions in metals. Acta Metall. 1988;36:3231–42.CrossRefGoogle Scholar
  53. 53.
    Lee TC, Robertson IM, Birnbaum HK. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A. 1990;62(1):131–53.CrossRefGoogle Scholar
  54. 54.
    Kacher J, Robertson IM. In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium. Philos Mag. 2014;94(8):814–29.CrossRefGoogle Scholar
  55. 55.
    Kacher J, Robertson IM. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta Mater. 2012;60(19):6657–72.CrossRefGoogle Scholar
  56. 56.
    Sangid MD, Ezaz T, Sehitoglu H, Robertson IM. Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 2011;59(1):283–96.CrossRefGoogle Scholar
  57. 57.
    Cui B, Kacher J, McMurtrey MD, Was GS, Robertson IM. Influence of irradiation damage on slip transfer across grain boundaries. Acta Mater. 2014;65:150–60.CrossRefGoogle Scholar
  58. 58.
    Cui B, McMurtrey MD, Was GS, Robertson IM. Micromechanistic origin of irradiation-assisted stress corrosion cracking. Philos Mag. 2014;94(36):4197–218.CrossRefGoogle Scholar
  59. 59.
    Mompiou F, Legros M, Boe A, Coulombier M, Raskin JP, Pardoen T. Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: an in situ TEM study. Acta Mater. 2013;61(1):205–16.CrossRefGoogle Scholar
  60. 60.
    Mompiou F, Caillard D, Legros M, Mughrabi H. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Mater. 2012;60(8):3402–14.CrossRefGoogle Scholar
  61. 61.
    Wang J, Misra A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opinion Solid State Mater Sci. 2011;15(1):20–8.CrossRefGoogle Scholar
  62. 62.
    Wang J, Zhou C, Beyerlein IJ, Shao S. Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM. 2014;66:102–13.CrossRefGoogle Scholar
  63. 63.
    Eftink, BP. Dislocation interactions with characteristic interfaces in Ag-Cu eutectic. In: Materials science and engineering. University of Illinois at Urbana-Champaign; 2016.Google Scholar
  64. 64.
    Eftink BP, Li A, Szlufarska I, Robertson IM. Interface mediated mechanisms of plastic strain recovery in a AgCu alloy. Acta Mater. 2016;117:111–21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Josh Kacher
    • 1
  • Ben P. Eftink
    • 2
  • Ian M. Robertson
    • 3
  1. 1.Georgia Institute of Technology, Materials Science and EngineeringAtlantaUSA
  2. 2.Los Alamos National Laboratory, MST-8 Materials Science in Radiation and Dynamic ExtremesLos AlamosUSA
  3. 3.University of Wisconsin-Madison, Materials Science and EngineeringMadisonUSA

Personalised recommendations