Simulation of Crack Propagation Under Mixed-Mode Loading

  • Martin Bäker
  • Stefanie Reese
  • Vadim V. Silberschmidt
Living reference work entry


Engineering components frequently contain cracks, either as an unavoidable consequence of their manufacturing (for example, pores in sintering processes or machining flaws) or due to processes occurring in service (cyclic loads, corrosive attacks, wear, etc.). Since it is not possible to completely avoid the formation of cracks, engineering safety requires to ensure that cracks do not lead to failure of a structure.


  1. 1.
    Rösler J, Harders H, Bäker M. Mechanical behaviour of engineering materials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007.Google Scholar
  2. 2.
    Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng. 2004;61(13):2316–43.MATHCrossRefGoogle Scholar
  3. 3.
    Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Comput Struct. 2010;88(23–24):1391–411.CrossRefGoogle Scholar
  4. 4.
    Meng C, Pollard DD. Modeling mixed-mode fracture propagation in 3D. In: 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association; 2012.Google Scholar
  5. 5.
    Meng C, Maerten F, Pollard DD. Modeling mixed-mode fracture propagation in isotropic elastic three dimensional solid. Int J Fract. 2013;179(1–2):45–57.CrossRefGoogle Scholar
  6. 6.
    Spatschek R, Brener E, Karma A. Phase field modeling of crack propagation. Philos Mag. 2011;91(1):75–95.CrossRefGoogle Scholar
  7. 7.
    Rountree CL, Kalia RK, Lidorikis E, Nakano A, Van Brutzel L, Vashishta P. Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations. Annu Rev Mater Res. 2002;32(1):377–400.CrossRefGoogle Scholar
  8. 8.
    Kohlhoff S, Schmauder S. A new method for coupled elastic-atomistic modelling. In: Atomistic simulation of materials. Boston: Springer; 1989, p 411–8.Google Scholar
  9. 9.
    Kohlhoff S, Gumbsch P, Fischmeister HF. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A. 1991;64(4):851–78.CrossRefGoogle Scholar
  10. 10.
    Gracie R, Belytschko T. Concurrently coupled atomistic and XFEM models for dislocations and cracks. Int J Numer Methods Eng. 2009;78(3):354–78.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Buehler MJ, editor. Atomistic modeling of materials failure. Boston: Springer US; 2008.Google Scholar
  12. 12.
    Besson J. Continuum models of ductile fracture: a review. Int J Damage Mech. 2010;19(1):3–52.CrossRefGoogle Scholar
  13. 13.
    Kuna M. Numerische Beanspruchungsanalyse von Rissen. Wiesbaden: Vieweg+Teubner; 2008.CrossRefGoogle Scholar
  14. 14.
    Brocks W. FEM-Analysen von Rissproblemen bei nichtlinearem Materialverhalten. Geesthacht: GKSS; 2007.Google Scholar
  15. 15.
    Gross D, Seelig T. Fracture mechanics: with an introduction to micromechanics. Heidelberg: Springer Science & Business Media; 2011.MATHCrossRefGoogle Scholar
  16. 16.
    Carter BJ, Wawrzynek P, Ingraffea AR. Automated 3-D crack growth simulation. Int J Numer Methods Eng. 2000;47(1–3):229–53.MATHCrossRefGoogle Scholar
  17. 17.
    Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131–50.MATHCrossRefGoogle Scholar
  18. 18.
    Fries TP, Zilian A. A short course on the extended finite element method. Luxembourg: Luxembourg, CES University of; 2013.MATHGoogle Scholar
  19. 19.
    Fries TP, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng. 2010;84(February):253–304.MathSciNetMATHGoogle Scholar
  20. 20.
    Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng. 2009;17(4):043001.CrossRefGoogle Scholar
  21. 21.
    Duflot M. A study of the representation of cracks with level sets. Int J Numer Methods Eng. 2007;70(11):1261–302.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Stolarska M, Chopp DL, Moës N, Belytschko T. Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng. 2001;51(January 2000):943–60.MATHCrossRefGoogle Scholar
  23. 23.
    Paris PC, Sih GC. Stress analysis of cracks. In: Fracture toughness testing and its applications. Philadelphia: ASTM International; 1965.Google Scholar
  24. 24.
    Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng. 1976;10(1):25–37.MATHCrossRefGoogle Scholar
  25. 25.
    Krueger R. Virtual crack closure technique: history, approach, and applications. Appl Mech Rev. 2004;57(2):109.CrossRefGoogle Scholar
  26. 26.
    Banks-Sills L. Update: application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev. 2010;63(2):020803.CrossRefGoogle Scholar
  27. 27.
    Cornell Fracture Group. Franc3D concepts & users guide. Ithaca: Cornell University; 2003.Google Scholar
  28. 28.
    Zencrack Zentech Int. Tool for 3D fracture mechanics simulation; 2012.Google Scholar
  29. 29.
    Loehnert S, Mueller-Hoeppe DS, Wriggers P. 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng. 2011;86(4–5):431–52.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Chan SK, Tuba IS, Wilson WK. On the finite element method in linear fracture mechanics. Eng Fract Mech. 1970;2(1):1–17.CrossRefGoogle Scholar
  31. 31.
    Lim IL, Johnston IW, Choi SK. Comparison between various displacement-based stress intensity factor computation techniques. Int J Fract. 1992;58(3):193–210.CrossRefGoogle Scholar
  32. 32.
    Bäker M. Finite element crack propagation calculation using trial cracks. Comput Mater Sci. 2008;43(1):179–83.CrossRefGoogle Scholar
  33. 33.
    Moran B, Shih CF. Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech. 1987;27(6):615–42.CrossRefGoogle Scholar
  34. 34.
    Shih CF, Moran B, Nakamura T. Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract. 1986;30(2):79–102.Google Scholar
  35. 35.
    Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ismall scale yielding. J Appl Mech. 1988;55(2):299–316.CrossRefGoogle Scholar
  36. 36.
    Dassault Systems. ABAQUS User’s manual and theory manual. 2014.Google Scholar
  37. 37.
    Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O. J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids. 2008;56(9):2876–95.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Steinmann P. Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct. 2000;37(48):7371–91.MATHCrossRefGoogle Scholar
  39. 39.
    Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. Int J Numer Methods Eng. 2002;53(7):1557–74.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. Int J Numer Methods Eng. 2003;58(12):1817–35.MATHCrossRefGoogle Scholar
  41. 41.
    Okada H, Kawai H, Tokuda T, Fukui Y. Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closure-integral method). Int J Fatigue. 2013;50:33–9.CrossRefGoogle Scholar
  42. 42.
    Bouchard PO, Bay F, Chastel Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng. 2003;192(35–36):3887–908.MATHCrossRefGoogle Scholar
  43. 43.
    Mróz KP, Mróz Z. On crack path evolution rules. Eng Fract Mech. 2010;77(11):1781–807.CrossRefGoogle Scholar
  44. 44.
    Chang J, Xu JQ, Mutoh Y. A general mixed-mode brittle fracture criterion for cracked materials. Eng Fract Mech. 2006;73:1249–63.CrossRefGoogle Scholar
  45. 45.
    Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fract. 1980;16(2):155–69.CrossRefGoogle Scholar
  46. 46.
    Hayashi K, Nemat-Nasser S. Energy-release rate and crack kinking under combined loading. J Appl Mech. 1981;48(3):520.MATHCrossRefGoogle Scholar
  47. 47.
    He MY, Hutchinson JW. Kinking of a crack out of an interface. J Appl Mech. 1989;56(2):270.CrossRefGoogle Scholar
  48. 48.
    Sutton MA, Deng X, Ma F, Newman JC Jr, James M. Development and application of a crack tip opening displacement-based mixed mode fracture criterion. Int J Solids Struct. 2000;37(26):3591–618.MATHCrossRefGoogle Scholar
  49. 49.
    Scheider I, Brocks W. Cohesive elements for thin-walled structures. Comput Mater Sci. 2006;37(1–2):101–9.CrossRefGoogle Scholar
  50. 50.
    Scheider I. Cohesive model for crack propagation analyses of structures with elastic plastic material behavior: foundations and implementation. Geesthacht: GKSS Research Center; 2001.Google Scholar
  51. 51.
    Xie D, Waas AM. Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech. 2006;73(13):1783–96.CrossRefGoogle Scholar
  52. 52.
    Schwalbe KH, Cornec A. Modeling crack growth using local process zones. Geesthacht: GKSS Research Centre; 1994.Google Scholar
  53. 53.
    Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech. 1987;54(3):525.MATHCrossRefGoogle Scholar
  54. 54.
    Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40(6):1377–97.MATHCrossRefGoogle Scholar
  55. 55.
    Turon A, Davila CG, Camanho PP, Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech. 2007;74(10):1665–82.CrossRefGoogle Scholar
  56. 56.
    Nguyen O, Ea R, Ortiz M, Radovitzky R. A cohesive model of fatigue crack growth. Int J Fract. 2001;110(4):351–69.CrossRefGoogle Scholar
  57. 57.
    Fremy F, Pommier S, Galenne E, Courtin S, Le Roux JC. Load path effect on fatigue crack propagation in I+II+III mixed mode conditions Part 2: finite element analyses. Int J Fatigue. 2014;62:113–8.CrossRefGoogle Scholar
  58. 58.
    Karolczuk A, Macha E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int J Fract. 2005;134(3–4):267–304.MATHCrossRefGoogle Scholar
  59. 59.
    Freund LB. Dynamic fracture mechanics. Cambridge: Cambridge University Press; 1990.MATHCrossRefGoogle Scholar
  60. 60.
    Fineberg J, Marder M. Instability in dynamic fracture. Phys Rep. 1999;313(1–2):1–108.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Freund LB. Crack propagation in an elastic solid subjected to general loading-I. Constant rate of extension. J Mech Phys Solids. 1972;20(3):129–40.MATHCrossRefGoogle Scholar
  62. 62.
    Swenson DV, Ingraffea AR. Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications. Comput Mech. 1988;3(6):381–97.MATHCrossRefGoogle Scholar
  63. 63.
    Yoffe EH. LXXV. The moving griffith crack. London, Edinburgh, Dublin Philos Mag J Sci. 1951;42(330):739–50.MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    XP X, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids. 1994;42(9):1397–434.MATHCrossRefGoogle Scholar
  65. 65.
    Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput. 2002;18(2):148–59.CrossRefGoogle Scholar
  66. 66.
    Miller O, Freund LB, Needleman A. Energy dissipation in dynamic fracture of brittle materials. Model Simul Mater Sci Eng. 1999;7(4):573–86.CrossRefGoogle Scholar
  67. 67.
    Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng. 2001;190(15–17):2227–62.MATHCrossRefGoogle Scholar
  68. 68.
    Menouillard T, Réthoré J, Moës N, Combescure A, Bung H. Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng. 2008;74(3):447–74.MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Prabel B, Combescure A, Gravouil A, Marie S. Level set X-FEM non-matching meshes: application to dynamic crack propagation in elasticplastic media. Int J Numer Methods Eng. 2007;69(8):1553–69.MATHCrossRefGoogle Scholar
  70. 70.
    Schiavone A, Abeygunawardana-Arachchige G, Silberschmidt VV. Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech. 2016;227(1):203–15.CrossRefGoogle Scholar
  71. 71.
    Chandwani R, Wiehahn M, Timbrell C. 3D fracture mechanics in ANSYS. In: UK ANSYS Conference. 2004. p. 1–19.Google Scholar
  72. 72.
    Wawrzynek P, Carter BJ, Ingraffea AR. Advances in simulation of arbitrary 3D crack growth using FRANC3D NG. ICF12, Ottawa 2009. 2012. p. 1–11.Google Scholar
  73. 73.
    Dhondt G. Application of the finite element method to mixed-mode cyclic crack propagation calculations in specimens. Int J Fatigue. 2014;58:2–11.CrossRefGoogle Scholar
  74. 74.
    Mishnaevsky LL, Lippmann N, Schmauder S. Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials. Int J Fract. 2003;120(4):581–600.CrossRefGoogle Scholar
  75. 75.
    Scheider I, Brocks W. Simulation of cupcone fracture using the cohesive model. Eng Fract Mech. 2003;70(14):1943–61.CrossRefGoogle Scholar
  76. 76.
    Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng. 2006;66(5):761–95.MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Song JH, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng. 2006;67(6):868–93.MATHCrossRefGoogle Scholar
  78. 78.
    Mishnaevsky LL, Schmauder S. Continuum mesomechanical finite element modeling in materials development: a state-of-the-art review. Appl Mech Rev. 2001;54(1):49.CrossRefGoogle Scholar
  79. 79.
    Kumar S, Curtin WA. Crack interaction with microstructure. Mater Today. 2007;10(9):34–44.CrossRefGoogle Scholar
  80. 80.
    Dong M, Schmauder S. Transverse mechanical behaviour of fiber reinforced composites FE modelling with embedded cell models. Comput Mater Sci. 1996;5(1–3):53–66.CrossRefGoogle Scholar
  81. 81.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct. 2003;40(13–14):3647–79.MATHCrossRefGoogle Scholar
  82. 82.
    Espinosa HD, Zavattieri PD. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater. 2003;35(3–6):333–64.CrossRefGoogle Scholar
  83. 83.
    Rezaei S, Wulfinghoff S, Kebriaei R, Reese S. Application of a cohesive zone element for the prediction of damage in nano/micro coating. PAMM. 2015;15(1):145–6.CrossRefGoogle Scholar
  84. 84.
    Zhai J, Tomar V, Zhou M. Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol. 2004;126(2):179.CrossRefGoogle Scholar
  85. 85.
    Bäker M. Finite element simulation of interface cracks in thermal barrier coatings. Comput Mater Sci. 2012;64:79–83.CrossRefGoogle Scholar
  86. 86.
    Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites. Compos Sci Technol. 2006;66(13):1980–94.CrossRefGoogle Scholar
  87. 87.
    Turon A, Camanho PP, Costa J, Davila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater. 2006;38(11):1072–89.CrossRefGoogle Scholar
  88. 88.
    Yang Q, Cox B. Cohesive models for damage evolution in laminated composites. Int J Fract. 2005;133(2):107–37.MATHCrossRefGoogle Scholar
  89. 89.
    Liu PF, Zheng JY. Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater Des. 2010;31(8):3825–34.CrossRefGoogle Scholar
  90. 90.
    Camanho PP, Davila CG, De Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater. 2003;37(16):1415–38.CrossRefGoogle Scholar
  91. 91.
    Stier B, Simon JW, Reese S. Finite element analysis of layered fiber composite structures accounting for the material’s microstructure and delamination. Appl Compos Mater. 2015;22(2):171–87.CrossRefGoogle Scholar
  92. 92.
    Merzbacher MJ, Horst P. A model for interface cracks in layered orthotropic solids: convergence of modal decomposition using the interaction integral method. Int J Numer Methods Eng. 2009;77(8):1052–71.MATHCrossRefGoogle Scholar
  93. 93.
    Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.CrossRefGoogle Scholar
  94. 94.
    Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Fracture of cortical bone tissue. In: Altenbach H, Brünig M, editors. Inelastic behavior of materials and structures under monotonic and cyclic loading. Vol. 57 of Advanced Structured Materials. Cham: Springer International Publishing; 2015. p. 143–70.Google Scholar
  95. 95.
    Abdel-Wahab A, Li S, Silberschmidt VV. Modelling fracture processes in bones. In: Computational modelling of biomechanics and biotribology in the musculoskeletal system. Cambridge: Elsevier; 2014. p. 268–302.CrossRefGoogle Scholar
  96. 96.
    Ural A, Vashishth D. Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech. 2006;39(16):2974–82.CrossRefGoogle Scholar
  97. 97.
    Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. 2005;38(7):1517–25.CrossRefGoogle Scholar
  98. 98.
    Raeisi Najafi A, Arshi AR, Eslami MR, Fariborz S, Moeinzadeh MH. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties. J Biomech. 2007;40(12):2788–95.CrossRefGoogle Scholar
  99. 99.
    Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. 2008;42(4):579–91.MATHCrossRefGoogle Scholar
  100. 100.
    Giner E, Arango C, Vercher A, Javier Fuenmayor F. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J Mech Behav Biomed Mater. 2014;37:109–24.CrossRefGoogle Scholar
  101. 101.
    Jin Z, Batra R. Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids. 1996;44(8):1221–35.CrossRefGoogle Scholar
  102. 102.
    Kim JH, Paulino GH. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng. 2002;53(8):1903–35.MATHCrossRefGoogle Scholar
  103. 103.
    Kim JH, Paulino GH. Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Eng Fract Mech. 2002;69(14–16):1557–86.CrossRefGoogle Scholar
  104. 104.
    Dolbow J, Gosz M. On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct. 2002;39(9):2557–74.MATHCrossRefGoogle Scholar
  105. 105.
    Tilbrook MT, Moon RJ, Hoffman M. Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng Fract Mech. 2005;72(16):2444–67.CrossRefGoogle Scholar
  106. 106.
    Cannillo V, Manfredini T, Montorsi M, Siligardi C, Sola A. Microstructure-based modelling and experimental investigation of crack propagation in glass-alumina functionally graded materials. J Eur Ceram Soc. 2006;26(15):3067–73.CrossRefGoogle Scholar
  107. 107.
    Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6(6):773–81.CrossRefGoogle Scholar
  108. 108.
    Bocca P, Carpinteri A, Valente S. Mixed mode fracture of concrete. Int J Solids Struct. 1991;27(9):1139–53.CrossRefGoogle Scholar
  109. 109.
    Rots JG, Nauta P, Kusters GMA, Blaauwendraad J. Smeared crack approach and fracture localization in concrete. HERON 1985;30(1).Google Scholar
  110. 110.
    Jirásek M. Damage and smeared crack models. Numer Model Concrete Crack. 2011;532:1–49.MATHCrossRefGoogle Scholar
  111. 111.
    de Borst R, Remmers JJC, Needleman A, Abellan MA. Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Anal Methods Geomech. 2004;28(7–8):583–607.MATHCrossRefGoogle Scholar
  112. 112.
    Bocca P, Carpinteri A, Valente S. Size effects in the mixed mode crack propagation: softening and snap-back analysis. Eng Fract Mech. 1990;35(1–3):159–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Martin Bäker
    • 1
  • Stefanie Reese
    • 2
  • Vadim V. Silberschmidt
    • 3
  1. 1.Institut für WerkstoffeTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institute of Applied MechanicsRWTH Aachen UniversityAachenGermany
  3. 3.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations