Modeling and Simulation of Bio-Inspired Nanoarmors

  • Stefano Signetti
  • Nicola M. Pugno
Living reference work entry

Later version available View entry history


The exploitation of bio-inspired solutions and of novel nanomaterials is gaining increasing attention in the field of impact protection. Indeed, especially for advanced applications, there is a growing pressure towards the reduction of the weight of protective structures without compromising their energy absorption capability. The complexity of the phenomena induced by high-energy contacts requires advanced and efficient computational models, which are also fundamental for achieving the optimum, overcoming the limits of experimental tests and physical prototyping in exploring the whole design space. At the same time, the modeling of bio-inspired toughening mechanisms requires additional capability of these methods to efficiently cover and merge different -and even disparate- size and time scales. In this chapter, we review computational methods for modeling the mechanical behavior of materials and structures under high-velocity (e.g., ballistic) impacts and crushing, with a particular focus on the nonlinear finite element method. Some recent developments in numerical simulation of impact are presented underlining merits, limits, and open problems in the modeling of bio-inspired and nanomaterial-based armors. In the end, two modeling examples, a bio-inspired ceramic-composite armor with ballistic protection capabilities and a modified honeycomb structure for energy absorption, are proposed.



NMP is supported by the European Commission H2020 under the Graphene Flagship (WP14 “Polymer Composites,” no. 696656) and the FET Proactive (“Neurofibers” no. 732344).


  1. 1.
    NASA. International space station risk of impact from orbital debris; 2015.
  2. 2.
    Hoog PJ. Composites in armour. Science. 2006;314(5802):1100–1.CrossRefGoogle Scholar
  3. 3.
    Abrate S. Ballistic impact on composites. In: Proceedings of the 16th International Conference on Composite Materials; Kyoto, Japan; 2007.Google Scholar
  4. 4.
    Kumar BG, Singh RP, Nakamura T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J Compos Mater. 2002;36(24):2713–33.CrossRefGoogle Scholar
  5. 5.
    Springer GS. Environmental effects on composite materials, vol. 3. Lancaster: Technomic Publishing; 1988.Google Scholar
  6. 6.
    Abrate S. Impact on composite structures. Cambridge/New York: Cambridge University Press; 2005.Google Scholar
  7. 7.
    Hazell PJ. Armour: materials, theory and design. Boca Raton: CRC Press; 2015.CrossRefGoogle Scholar
  8. 8.
    LaSalvia JC, Gyekenyesi A, Halbig M. (Eds.). Advances in Ceramic Armors X. Vol. 35 of Ceramic Engineering and Science Proceedings. Wiley; 2014. ISBN: 978-1-119-04060-6.Google Scholar
  9. 9.
    Liu W, Chen Z, Chen Z, Cheng X, Wang Y, Chen X, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:31–27.Google Scholar
  10. 10.
    Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRefGoogle Scholar
  11. 11.
    Zhang T, Li X, Kadkhodaei S, Gao H. Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 2012;12(9):4605–10.CrossRefGoogle Scholar
  12. 12.
    Cranford SW. When is 6 less than 5? Penta- to hexa-graphene transition. Carbon. 2016;96:421–8.CrossRefGoogle Scholar
  13. 13.
    Lee JH, Loya PE, Loeu J, Thomas EL. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014;346:1092–6.CrossRefGoogle Scholar
  14. 14.
    Lee JH, Veysse D, Singer JP, Retsch M, Saini G, Pezeril T, et al. High strain rate deformation of layered nanocomposites. Nat Commun. 2012;3(1164):1–7.Google Scholar
  15. 15.
    Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural flexible dermal armour. Adv Mater. 2013;25(1):31–48.CrossRefGoogle Scholar
  16. 16.
    Goldsmith WJ. IMPACT – the theory and physics of colliding solids. 2nd ed. New York: Dover Publications; 2001.zbMATHGoogle Scholar
  17. 17.
    Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech. 1963;30(3):384–90.CrossRefGoogle Scholar
  18. 18.
    Goldsmith W. Non-ideal projectile impact on targets. Int J Impact Eng. 1999;22(2–3):95–395.CrossRefGoogle Scholar
  19. 19.
    Porwal PK, Phoenix SL. Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor. Int J Fract. 2005;135(1-4):217249.CrossRefzbMATHGoogle Scholar
  20. 20.
    Lim CT, Shim VPW, Ng YH. Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng. 2003;28(1):13–31.CrossRefGoogle Scholar
  21. 21.
    Signetti S, Bosia F, Pugno NM. Computational modelling of the mechanics of hierarchical materials. MRS Bull. 2016;41(9):694–9.CrossRefGoogle Scholar
  22. 22.
    Signetti S, Pugno NM. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection. J Eur Ceram Soc. 2014;34(11):2823–31.CrossRefGoogle Scholar
  23. 23.
    Wang B, Yang W, Vincent R, Sherman R, Meyers MA. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016;41:60–74.CrossRefGoogle Scholar
  24. 24.
    Achrai B, Bar-On B, Wagner HD. Bending mechanics of the red-eared slider turtle carapace. J Mech Behav Biomed Mater. 2014;30:223–33.CrossRefGoogle Scholar
  25. 25.
    Bruet BJF, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nat Mater. 2008;7(9):748–56.CrossRefGoogle Scholar
  26. 26.
    Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Chang EH, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater. 2014;5(8):3599–614.CrossRefGoogle Scholar
  27. 27.
    Rudykh S, Ortiz C, Boyce MC. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter. 2015;11:2547–54.CrossRefGoogle Scholar
  28. 28.
    Zimmermann EA, Gludovatz B, Schaible E, Dave NKN, Yang W, Meyers MA, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun. 2013;4:2634.CrossRefGoogle Scholar
  29. 29.
    Li L, Ortiz C. A natural 3D interconnected laminated composite with enhanced damage resistance. Adv Funct Mater. 2015;25(23):3463–71.CrossRefGoogle Scholar
  30. 30.
    Garrett KW, E J B. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. J Mater Sci. 1977;12(1):157–68.CrossRefGoogle Scholar
  31. 31.
    Currey JD. Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater. 2010;3(5):357–72.CrossRefGoogle Scholar
  32. 32.
    Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids. 2007;55(2):306–37.CrossRefGoogle Scholar
  33. 33.
    Sen D, Buehler MJ. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep. 2011;1(35):1–9.Google Scholar
  34. 34.
    Bosia F, Abdalrahman T, Pugno NM. Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale. 2012;4:1200–7.CrossRefGoogle Scholar
  35. 35.
    Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter. 2014;10:4436–42.CrossRefGoogle Scholar
  36. 36.
    Vickaryous MK, Hall BK. Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol. 2006;267(11):1273–83.CrossRefGoogle Scholar
  37. 37.
    Rhee H, Horstemeyer MF, Hwang Y, Lim H, Kadiri HE, Trim W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C. 2009;29(8):2333–9.CrossRefGoogle Scholar
  38. 38.
    Lin E, Li Y, Weaver JC, Ortiz C, Boyce MC. Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. J Mater Res. 2014;29(17):1867–75.CrossRefGoogle Scholar
  39. 39.
    Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. Int J Solids Struct. 2010;47(17):2268–75.CrossRefzbMATHGoogle Scholar
  40. 40.
    Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R. Structure-function relationship of the foam-like pomelo peel (Citrus maxima) an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim. 2013;8(2):025001.CrossRefGoogle Scholar
  41. 41.
    Fischer SF, Thielen M, Weiß P, Seidel R, Speck T, Bührig-Polaczek A, Bünck M. Production and properties of a precision-cast bio-inspired composite. J Mater Sci. 2014;49(1):43–51.CrossRefGoogle Scholar
  42. 42.
    Dimas LS, H G B, Eylon I, Buehler MJ. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Funct Mater. 2013;23(36):4629–38.CrossRefGoogle Scholar
  43. 43.
    Aversa L, Taioli S, Nardo MV, Tatti T, Verrucchi R, Iannotta S. The interaction of C60 on Si(111) 7×7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front Mater. 2015;2(46):12–20.Google Scholar
  44. 44.
    Brély L, Bosia F, Pugno NM. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites. Fron Mater. 2015;2(51):64–73.Google Scholar
  45. 45.
    Frenkel D, Smit B. Understanding molecular simulation – from algorithms to applications. 2nd ed. San Diego: Academic; 2002.zbMATHGoogle Scholar
  46. 46.
    Xu M, Paci JT, Oswald J, Belytschko T. A constitutive equation for graphene based on density functional theory. Int J Solids Struct. 2012;49(18):2582–9.CrossRefGoogle Scholar
  47. 47.
    Tatti R, Aversa L, Verrucchi R, Cavaliere E, Garberoglio G, Pugno NM, et al. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 2016;6(44):37982–93.CrossRefGoogle Scholar
  48. 48.
    Signetti S, Taioli S, Pugno NM. 2D materials armors showing superior impact strength of few layers. ACS Appl Mater Inter. 2017;9(46):40820–30.CrossRefGoogle Scholar
  49. 49.
    Yoon K, Ostadhossein A, van Duin ADT. Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact. Carbon. 2016;99:58–64.CrossRefGoogle Scholar
  50. 50.
    Pradhan S, Hansen A, Chakrabarti BK. Failure processes in elastic fiber bundles. Rev Mod Phys. 2010;82(1):499–555.CrossRefGoogle Scholar
  51. 51.
    Pugno NM, Bosia F, Abdalrahman T. Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Phys Rev E. 2012;85:011903.CrossRefGoogle Scholar
  52. 52.
    Zapperi S, Vespignani A, Eugene Stanley H. Plasticity and avalanche behaviour in microfracturing phenomena. Nature. 1997;388(6643):658–60.CrossRefGoogle Scholar
  53. 53.
    Pugno NM, Ruoff RS. Quantized fracture mechanics. Philos Mag. 2004;84(27):2829–45.CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Zhang YW, Gao H. On optimal hierarchy of load-bearing biological materials. Proc R Soc B. 2011;278(1705):519–25.CrossRefGoogle Scholar
  55. 55.
    Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, et al. Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon. 2014;78:566–77.CrossRefGoogle Scholar
  56. 56.
    Bosia F, Abdalrahman T, Pugno NM. Self-healing of hierarchical materials. Langmuir. 2014;30(4):1123–33.CrossRefGoogle Scholar
  57. 57.
    Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. Hoboken: Wiley; 2013.zbMATHGoogle Scholar
  58. 58.
    Wriggers P. Computational contact mechanics. 2nd ed. Berlin/Heidelberg: Springer-Verlag; 2006.CrossRefzbMATHGoogle Scholar
  59. 59.
    Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng. 1985;51(1):107–37.MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Cuniff PM. Dimensionless parameters for optimization of textile-based body armor systems. In: Proceedings of the 18th International Symposium of Ballistics. San Antonio; 1999. p. 1303–10.Google Scholar
  61. 61.
    Cuniff PM. Analysis of the system effects in woven fabrics under ballistic impact. Text Res J. 1992;62(9):495–509.CrossRefGoogle Scholar
  62. 62.
    Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng. 1984;43(3):251–76.CrossRefzbMATHGoogle Scholar
  63. 63.
    Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209.MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17–18):1526–35.CrossRefGoogle Scholar
  65. 65.
    Laboratories SN. LAMMPS molecular dynamics simulator; 2015.
  66. 66.
    Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Comput Phys Commun. 2008;179(11):777–83.CrossRefzbMATHGoogle Scholar
  67. 67.
    Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech. 2005;40(2–3):395–409.CrossRefzbMATHGoogle Scholar
  68. 68.
    Lee J, Liu W, Hong JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng. 2016;87:108–19.CrossRefGoogle Scholar
  69. 69.
    Lepore E, Bonaccorso F, Bruna M, Bosia F, Taioli S, Garberoglio G, et al. Silk reinforced with graphene or carbon nanotubes spun by spiders. arXiv. 2016. (arXiv:1504.06751 [cond-mat.mtrl-sci]) 2D Mater. 2017; 4(3):031013.Google Scholar
  70. 70.
    Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Struct. 1997;34(31–32):4127–46.CrossRefzbMATHGoogle Scholar
  71. 71.
    Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields. Mech Based Des Struct Mach. 2009;37(4):538–49.CrossRefGoogle Scholar
  72. 72.
    Jacobs MJN, Dingenen JLJV. Ballistic protection mechanisms in personal armour. J Mater Sci. 2001;36(13):3137–42.CrossRefGoogle Scholar
  73. 73.
    Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. AIP Conf Proc. 1994;309(1):981–4.CrossRefGoogle Scholar
  74. 74.
    Cronin DS, Bui K, Kauffmann C, McIntosh G, Berstad T. Implementation and validation of the Johnson-Holmquist ceramic material model in Ls-Dyna. In: 4th European LS-DYNA Users Conferences; Ulm, Germany; 2011. p. 47–60.Google Scholar
  75. 75.
    Hetherington JG. The optimization of two component composite armours. Int J Impact Eng. 1992;12(3):409–14.CrossRefGoogle Scholar
  76. 76.
    Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites. Mech Mater. 1995;20(2):125–52.CrossRefGoogle Scholar
  77. 77.
    Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol. 2010;70(7):1049–56.CrossRefGoogle Scholar
  78. 78.
    Chen Q, Pugno NM, Zhao K, Li Z. Mechanical properties of a hollow-cylindrical-joint honeycomb. Compos Struct. 2014;109:68–74.CrossRefGoogle Scholar
  79. 79.
    Chen Q, Shi Q, Signetti S, Sun F, Li Z, Zhu F, et al. Plastic collapse of cylindrical shellplate periodic honeycombs under uniaxial compression: experimental and numerical analyses. Int J Mech Sci. 2016;111–112:125–33.CrossRefGoogle Scholar
  80. 80.
    Gibson LJ, Ashby MF. Cellular solids – structure and properties. 2nd ed. Cambridge/New York: Cambridge University Press; 1999.zbMATHGoogle Scholar
  81. 81.
    Andrews KRF, England GL, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci. 1983;25:687–96.CrossRefGoogle Scholar
  82. 82.
    Nedjari S, Schlatter G, Hébraud A. Thick electrospun honeycomb scaffolds with controlled pore size. Mater Lett. 2015;142:180–3.CrossRefGoogle Scholar
  83. 83.
    Applegate MB, Coburn J, Partlow BP, Moreau JE, Mondia JP, Marelli B, et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci. 2015;112(39):12052–7.CrossRefGoogle Scholar
  84. 84.
    de Touzalin A, Marcus C, Heijman F, Cirac I, Murray R, Calarco T. QUANTUM MANIFESTO – a new era of technology; 2016.
  85. 85.
    Chen S., Liu Q, He G., et al. Reticulated Carbon Foam Derived From a Sponge-Like Natural Product as a High Performance Anode in Microbial Fuel Cells. J. Mat. Chem. 2012;22:18609–18613Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  2. 2.Currently at: Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  4. 4.School of Engineering and Materials SciencesQueen Mary University of LondonLondonUK
  5. 5.Ket-Lab, Edoardo Amaldi Foundation, Italian Space AgencyRomeItaly

Personalised recommendations