Skip to main content

Atomistic Simulations of Hydrogen Effects on Lattice Defects in Alpha Iron

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Solute hydrogen atoms degrade the strength of materials. This phenomenon, termed as hydrogen embrittlement (HE), has been a matter of concern for various industrial applications for more than a century. In recent years, HE has to be addressed because of the need for more efficient storage and transport of hydrogen. In this chapter, we present an overview of the current state of knowledge of the interaction between hydrogen and lattice defects. In Sect. 2, the hydrogen trap energy of various trap sites in alpha iron is reviewed and summarized. In Sect. 3, first, the hydrogen concentration around the defects is outlined based on the evaluation of the occupancy at each trap site. Subsequently, the effect of hydrogen on the stability and the kinetics of the lattice defects that trap hydrogen atoms are reviewed. In Sect. 4, mesoscopic calculations of the complex interactions among hydrogen-affected lattice defects are reviewed. Finally, the current state of knowledge of hydrogen effects on lattice defects and future directions are discussed. Alpha iron is considered because it is a basic steel component, and steel is a potential material for hydrogen storage and transport systems from engineering and economic viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Myers SM, Baskes MI, Birnbaum HK, Corbett JW, Deleo GG, Estreicher SK, Haller EE, Jena P, Johnson NM, Kirchheim R, Pearton SJ, Stavola MJ. Hydrogen interactions with defects in crystalline solids. Rev Mod Phys. 1992;64:559–617.

    Article  Google Scholar 

  2. Birnbaum HK, Robertson IM, Sofronis P, Teter D. Mechanisms of hydrogen related fracture – a review. In: Magnin T, editor. Corrosion Deformation Interactions CDI’96, Nice; 1997. p. 172–195.

    Google Scholar 

  3. Lynch SP. Mechanisms of hydrogen assisted cracking – a review. In: Moody NR, Thompson AW, Ricker RE, Was GW, Hones RH, editors. Hydrogen effects on materials behavior and corrosion deformation interactions. Warrendale: TMS; 2003.

    Google Scholar 

  4. Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer; 2016.

    Book  Google Scholar 

  5. Frohmberg RP, Barnett WJ, Troiano AR. Delayed failure and hydrogen embrittlement in steel. Trans ASM. 1955;47:892–935.

    Google Scholar 

  6. Oriani RA, Josephic H. Equilibrium aspects of hydrogen induced cracking of steels. Acta Metall. 1974;22:1065–74.

    Article  Google Scholar 

  7. Birnbaum HK, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater Sci Eng A. 1994;176:191–202.

    Article  Google Scholar 

  8. Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater. 1998;46:1749–57.

    Article  Google Scholar 

  9. Sofronis P, Robertson IM. Transmission electron microscopy observations and micromechanical continuum models for the effect of hydrogen on the mechanical behaviour of metals. Phil Magazine A. 2002;82:3405–13.

    Article  Google Scholar 

  10. Murakami Y. The effect of hydrogen on fatigue properties of metals used for fuel cell system. Int J Fract. 2006;138:167–95.

    Article  MATH  Google Scholar 

  11. Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A. 2001;32:339–47.

    Article  Google Scholar 

  12. Monasterio PR, Lau TT, Yip S, Van Vliet KJ. Hydrogen-vacancy interactions in Fe-C alloys. Phys Rev Lett. 2009;103:085501.

    Article  Google Scholar 

  13. Kirchheim R. On the solute-defect interaction in the framework of a defactant concept. Int J Mater Res. 2009;100:483–7.

    Article  Google Scholar 

  14. Seki S, Matsumoto R, Inoue Y, Taketomi S, Miyazaki N. Development of EAM potential for Fe with pseudo-hydrogen effects and molecular dynamics simulation of hydrogen embrittlement. J Soc Mater Sci Jpn. 2012;61:175–82. (in Japanese)

    Article  Google Scholar 

  15. Matsumoto R, Inoue Y, Taketomi S, Miyazaki N. Influence of shear strain on the hydrogen trapped in bcc-Fe: a first-principles-based study. Scr Mater. 2009;60:555–8.

    Article  Google Scholar 

  16. Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in alpha iron. Acta Mater. 2008;56:3761–9.

    Article  Google Scholar 

  17. Sofronis P, Birnbaum HK. Mechanics of the hydrogen-dislocation-impurity interactions—I. Increasing shear modulus. J Mech Phys Solid. 1995;43:49–90.

    Article  MATH  Google Scholar 

  18. Krom AHM, Bakker A, Koers RWJ. Modelling hydrogen-induced cracking in steel using a coupled diffusion stress finite element analysis. Int J Pressure Vessels Piping. 1997;72:139–47.

    Article  Google Scholar 

  19. Kotake H, Matsumoto R, Taketomi S, Miyazaki N. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading. Int J Pressure Vessels Piping. 2008;85:540–9.

    Article  Google Scholar 

  20. Takayama K, Matsumoto R, Taketomi S, Miyazaki N. Hydrogen diffusion analyses of a cracked steel pipe under internal pressure. Int J Hydro Ene. 2011;36:1037–45.

    Article  Google Scholar 

  21. Cochardt AW, Schoek G, Wiedersich H. Interaction between dislocations and interstitial atoms in body-centered cubic metals. Acta Metall. 1955;3:533–7.

    Article  Google Scholar 

  22. Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS. Dislocation interaction with C in α-Fe: a comparison between atomic simulations and elasticity theory. Acta Mater. 2008;56:3450–60.

    Article  Google Scholar 

  23. Kresse G, Hafner J. Ab initio molecular-dynamics for open-shell transition-metals. Phys Rev B. 1993;48:13115–8.

    Article  Google Scholar 

  24. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–86.

    Article  Google Scholar 

  25. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.

    Article  Google Scholar 

  26. Tateyama Y, Ohno T. Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study. Phys Rev B. 2003;67:174105.

    Article  Google Scholar 

  27. Matsumoto R, Nishiguchi N, Taketomi S, Miyazaki N. First-principles calculation of hydrogen effects on the formation and diffusion of vacancies in alpha iron: discussion of the hydrogen-enhanced strain-induced vacancy mechanism. J Soc Mater Sci Jpn. 2014;63:182–7. (in Japanese)

    Article  Google Scholar 

  28. Besenbacher F, Myers SM, Nordlander P, Nørskov JK. Multiple hydrogen occupancy of vacancies in Fe. J Appl Phys. 1987;61:1788–94.

    Article  Google Scholar 

  29. Lu G, Zhang Q, Kioussis N, Kaxiras E. Hydrogen-enhanced local plasticity in aluminum: an ab initio study. Phys Rev Lett. 2001;87:095501.

    Article  Google Scholar 

  30. Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen diffusion around dislocations in alpha iron. In: Effects of Hydrogen on Materials. Proceedings of the 2008 International Hydrogen Conference, Jackson Lake; 2009. p. 655–62.

    Google Scholar 

  31. Wen M, Xu XJ, Fukuyama S, Yokogawa K. Embedded-atom-method functions for body-centered-cubic iron. J Mater Res. 2001;16:3496–502.

    Article  Google Scholar 

  32. Itakura M, Kaburaki H, Yamaguchi M, Okita T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: a first-principles study. Acta Mater. 2013;61:6857–67.

    Article  Google Scholar 

  33. Kimizuka H, Ogata S. Slow diffusion of hydrogen at a screw dislocation core in α-iron. Phys Rev B. 2011;84:024116.

    Article  Google Scholar 

  34. Riku M, Matsumoto R, Taketomi S, Miyazaki N. Atomistic simulation study of cohesive energy of grain boundaries in alpha iron under gaseous hydrogen environment. J Soc Mater Sci Jpn. 2010;59:589–95. (in Japanese)

    Article  Google Scholar 

  35. Matsumoto R, Riku M, Taketomi S, Miyazaki N. Hydrogen–grain boundary interaction in Fe, Fe–C, and Fe–N systems. Prog Nucl Sci Tech. 2010;2:9–15.

    Article  Google Scholar 

  36. Yamaguchi M, Ebihara K, Itakura M, Kadoyoshi T, Suzudo T, Kaburaki H. First-principles study on the grain boundary embrittlement of metals by solute segregation: part II. Metal (Fe, Al, Cu)-hydrogen (H) systems. Metall Mater Trans A. 2011;42A:330–9.

    Article  Google Scholar 

  37. Sorescu DC. First principles calculation of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal Today. 2005;105(1):44–65.

    Article  Google Scholar 

  38. Enomoto T, Matsumoto R, Taketomi S, Miyazaki N. First-principles estimation of hydrogen occupancy around lattice defects in al. J Soc Mater Sci Jpn. 2010;59:596–603. (in Japanese)

    Article  Google Scholar 

  39. McLean D. Grain boundaries in metals. London: Oxford University Press; 1957.

    Google Scholar 

  40. Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11:861–90.

    Article  Google Scholar 

  41. Alfè D. PHON: a program to calculate phonons using the small displacement method. Comp Phys Commun. 2009;180:2622–33.

    Article  Google Scholar 

  42. Togo A. Welcome – phonopy. Available from: http://atztogo.github.io/phonopy/. Accessed 26 Sept 2016

  43. Matsumoto R, Sera M, Miyazaki N. Hydrogen concentration estimation in metals at finite temperature using first-principles calculations and vibrational analysis. Comput Mater Sci. 2014;91:211–22.

    Article  Google Scholar 

  44. Vasp TST Tools. Available from: http://theory.cm.utexas.edu/vtsttools/. Accessed 27 Sept 2016

  45. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–4.

    Article  Google Scholar 

  46. Bechtle S, Kumar M, Somerday BP, Launey ME, Ritchie RO. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009;57:4148–57.

    Article  Google Scholar 

  47. Gesari S, Irigoyen B, Juan A. Segregation of H, C and B to Σ=5 (013) α-Fe grain boundary: a theoretical study. Appl Surface Sci. 2006;253:1939–45.

    Article  Google Scholar 

  48. Yamaguchi M, Kameda J, Ebihara K, Itakura M, Kaburaki H. Mobile Effect of hydrogen on intergranular decohesion of iron: first principles calculations. Philo Mag. 2012;92:1349–69.

    Article  Google Scholar 

  49. Taketomi S, Matsumoto R, Miyazaki N. Atomistic simulation of the effects of hydrogen on the mobility of edge dislocation in alpha iron. J Mater Sci. 2008;43:1166–9.

    Article  Google Scholar 

  50. Taketomi S, Matsumoto R, Miyazaki N. Atomic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron. J Mater Res. 2011;26:1269–78.

    Article  Google Scholar 

  51. Taketomi S, Matsumoto R, Miyazaki N. Molecular statics study of the effect of hydrogen on edge dislocation motion in alpha-Fe. In: Somerday BP, Sofronis P, editors. Hydrogen-materials interactions: ASME, 2 Park Avenue, New York, NY 10016, USA; 2014. p. 765–70.

    Google Scholar 

  52. Taketomi S, Imanishi H, Matsumoto R, Miyazaki N. Dislocation dynamics analysis of hydrogen embrittlement in alpha iron based on atomistic investigations. In: Proceedings of 13th International Conference Fracture, ICF13, Beijing; 2013. p. 5721–9.

    Google Scholar 

  53. Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in alpha iron. Int J Mech Sci. 2010;52:334–8.

    Article  Google Scholar 

  54. Takai K, Shoda H, Suzuki H, Nagumo M. Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 2008;56:5158–67.

    Article  Google Scholar 

  55. Karthikeyan S. Evaluation of the jogged-screw model of creep in equiaxed gammma-TiAl: identification of the key substructural parameters. Acta Mater. 2004;52:2577–89.

    Article  Google Scholar 

  56. Kotake H, Matsumoto R, Taketomi S, Miyazaki N. Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading. Int J Press Vess Pip. 2008;85:540–9.

    Article  Google Scholar 

  57. Doshida T, Nakamura M, Saito H, Sawada T, Takai K. Hydrogen-enhanced lattice defect formation and hydrogen embrittlement of cyclically prestressed tempered martensitic steel. Acta Mater. 2014;61:7755–66.

    Article  Google Scholar 

  58. Matsuoka S, Tanaka H, Homma N, Murakami Y. Influence of hydrogen and frequency on fatigue crack growth behavior of Cr-Mo steel. Int J Fract. 2011;168:101–12.

    Article  Google Scholar 

  59. Matsumoto R, Seki S, Taketomi S, Miyazaki N. Hydrogen-related phenomena due to decreases in lattice defect energies—molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects. Comput Mater Sci. 2014;92:362–71.

    Article  Google Scholar 

  60. Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag. 2003;83:3977–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taketomi, S., Matsumoto, R. (2018). Atomistic Simulations of Hydrogen Effects on Lattice Defects in Alpha Iron. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics