Skip to main content

Nontoxic Ionic Liquids: Emerging Substitute for Classical Antimicrobial Materials

  • Living reference work entry
  • First Online:

Abstract

Ionic liquids (ILs) have been raising significant attention as remarkable nontoxic chemical compounds in academia, medicinal, and industrial research. Ease of structural tunability and excellent physicochemical and biological properties of ILs pave the way to play an important role in the fields of synthesis, medicine, drug development, extraction, catalysis, electrochemistry, analytics, biotechnology, etc. Even it also proves the acceptability to the synthetic chemist, biochemists, ecologists, and medical scientists as an environmentally compatible solvent. The development of new ILs is an area of tremendous importance in the modern organic synthesis and particularly in synthetic medicinal chemistry. Over the last decade, the intense growth in research publication related to ionic liquid has furnished many task-specific ionic liquids as a nonhazardous and environmentally favorable alternative to the classical materials particularly for the prevention and treatment of microbial infections and many associated applications in the allied field. Hence in this entry, the entire discussion revolves around the recent interest in emerging potential application of ionic liquids as nontoxic antimicrobial materials.

This is a preview of subscription content, log in via an institution.

References

  1. (a) Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084; (b) Gorman J (2001) Faster, better, cleaner?: New liquids take aim at old‐fashioned chemistry. Sci News 160:156–158; (c) Brennecke JF, Maginn EJ (2001) Ionic liquids: Innovative fluids for chemical processing. AIChE J 47:2384–2388; (d) Giernoth R (2010) Task-specific ionic liquids. Angew Chem Int Ed 49:2834–2839; (e) Huo C, Chan TH (2010) A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports. Chem Soc Rev 39:2977–3006; (f) Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YH (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3713

    Google Scholar 

  2. (a) Rogers RD, Seddon KR (2002) Ionic liquids; industrial applications to green chemistry. American Chemical Society, Washington, DC, pp 1–492; (b) Wasserschid P, Welton T (eds) (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim, pp 1–380; (c) Wasserscheid P, Van Hal R, Bösmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid. Green Chem 4:400–404; (d) Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546; (e) Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189

    Google Scholar 

  3. (a) Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637; (b) Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7:336–360; (c) Calfee DP (2012) Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis 25:385–394; (d) Bera S, Mondal D, Palit S, Schweizer F (2016) Structural modifications of the neomycin class of aminoglycosides. Med Chem Commun 7:1499–1534; (e) Miskiewicz A, Ceranowicz P, Szymczak M, Bartu’s K, Kowalczyk P The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by klebsiella pneumoniae New Delhi strain, Acinetobacter Baumannii and Enterococcus Species. (2018) Int J Mol Sci 19:2779; (f) Ferraz R, Branco LC, Prudêncio C, Noronha JP, Petrovski Z (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6:975–985

    Google Scholar 

  4. (a) Walkiewicz F, Materna K, Kropacz A, Michalczyk A, Gwiazdowski R, Praczyk T et al (2010) Multifunctional long-alkyl-chain quaternary ammonium azolate based ionic liquids. New J Chem 34:2281–2289; (b) MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448; (c) Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products the example of ionic liquids. Chem Rev 107:2183–2206; (d) Pendleton JN, Gilmore BF (2015) The antimicrobial potential of ionic liquids: A source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents 46:131–139

    Google Scholar 

  5. (a) Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5:52–56; (b) Pernak J, Feder-Kubis J, Cieniecka-Roslonkiewicz A, Fischmeister C, Griffin ST, Rogers RD (2007) Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(−)-menthoxymethyl substituent. New J Chem 31:879–892; (c) Pernak J, Skrzypezak A, Lota G, Frackowiak E (2007) Synthesis and properties of trigeminal tricationic ionic liquids. Chemistry – A European Journal 13:3106–3112; (d) Pernak J, Borucka N, Walkiewicz F, Markiewicz B, Fochtman P, Stolte S, Steudte S, Stepnowski P (2011) Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem 13:2901–2910; (e) Pernak J, Goc I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323–329

    Google Scholar 

  6. Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9:807–820

    Article  CAS  Google Scholar 

  7. Busetti A, Crawford DE, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, Laverty G, Lowry AF, McLaughlin M, Seddon KR (2010) Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem 12:420–425

    Article  CAS  Google Scholar 

  8. Choi SY, Rodríguez H, Mirjafari A, Gilpin DF, McGrath S, Malcolm KR, Tunney MM, Rogers RD, McNally T (2011) Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chem 13:1527–1535

    Article  CAS  Google Scholar 

  9. (a) Carson L, Chau PKW, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, McCann MT, Seddon KR (2009) Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem 11:492–497; (b) Nancharaiah YV, Reddy GKK, Lalithamanasa P, Venugopalan VP (2012) The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling 28:1141–1149; (c) Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171; (d) Yu Y, Nie Y (2011) Toxicity and Antimicrobial Activities of Ionic Liquids with Halogen Anion. J Environ Prot 2:298–303; (e) Mester P, Wagner M, Rossmanith P (2015) Antimicrobial effects of short chained imidazolium-based ionic liquids—influence of anion chaotropicity. Ecotoxicol Environ Saf 111:96–101; (f) Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    Google Scholar 

  10. Alberto EE, Rossato LL, Alves SH, Alves D, Braga AL (2011) Imidazolium ionic liquids containing selenium: synthesis and antimicrobial activity. Org Biomol Chem 9:1001–1003

    Article  CAS  Google Scholar 

  11. (a) Cole MR, Li M, El-Zahab B, Janes ME, Hayes D, Warner IM (2011) Design, synthesis, and biological evaluation of β-lactam antibiotic-based imidazolium- and pyridinium-type ionic liquids. Chem Biol Drug Des 78:33–41; (b) Cole MR, Li M, Jadeja R, El-Zahab B, Hayes D, Hobden JA, Janes ME, Warner IM (2013) Minimizing human infection from Escherichia coli O157:H7 using GUMBOS. J Antimicrob Chemother:1312–1318; (c) Ferraz R, Teixeira V, Rodrigues D, Fernandes R, Prudencio C, Noronha JP, Petrovski Z, Branco LC (2014) Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. RSC Adv 4:4301–4307; (d) O’Toole GA, Wathier M, Zegans ME, Shanks RMQ, Kowalski R, Grinstaff MW (2012) Diphosphonium ionic liquidsas broadspectrum antimicrobial agents. Cornea 31:810–816; (e) Brunel F, Lautard C, Garzino F, Giorgio S, Raimundo JM, Bolla JM, Camplo M (2016) Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids. Bioorg Med Chem Lett 26:3770–3773

    Google Scholar 

  12. (a) Coleman D, Špulák M, Garciac MT, Gathergood N(2012) Antimicrobial toxicity studies of ionic liquids leading to a ‘hit’ MRSA selective antibacterial imidazolium salt. Green Chem 14:1350–1356; (b) Borowiecki P, Milner-Krawczyk M, Brzezinska D, Wielechowska M, Plenkiewicz J (2013) Synthesis and antimicrobial activity of imidazolium and triazolium chiral ionic liquids. Eur J Org Chem:712–720

    Google Scholar 

  13. (a) He B, Ou G, Zhou C, Wang M, Chen S (2013) Antimicrobial ionic liquids with fumarate anion. J Chem. Article ID 473153, 7 pages; (b) Deguit DT, Ong W, Camacho D (2014) Facile synthesis of imidazolium based ionic liquids with organic anions: preparation, characterization, antimicrobial activity, and toxicity studies. Presented at the DLSU Research Congress, De La Salle University, Manila, 6–8 Mar 2014

    Google Scholar 

  14. Gindri IM, Siddiqui DA, Bhardwaj P, Rodriguez LC, Palmer KL, Frizzo CP, Martinsc MAP, Rodrigues DC (2014) Dicationic imidazolium-based ionic liquids: a new strategy for non-toxic and antimicrobial materials. RSC Adv 4:62594–62602

    Article  CAS  Google Scholar 

  15. (a) Panga LQ, Zhonga LJ, Zhoua HF, Wua XE, Chen XD (2015) Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids Surf B: Biointerfaces 126:162–168; (b) Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q (2012) Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J Mater Chem 22:13123–13131

    Google Scholar 

  16. (a) Hajipour AR, Rafiee F (2015) Recent progress in ionic liquids and their applications in organic synthesis. Org Prep Proced Int 47:249–308; (b) Bica K, Cooke LR, Rijksen C, Rogers RD (2011) Toxic on purpose: ionic liquid fungicides as combinatorial crop protecting agents. Green Chem 13:2344–2346; (c) Fang D, Jiao C, Ni C (2010) SO3H‐functionalized ionic liquids catalyzed the synthesis of α‐aminophosphonates in aqueous media. Heteroat Chem 21:546–550; (d) Cojocaru OA, Shamshina JL, Gurau G, Syguda A, Praczyk T, Pernak J, Rogers RD (2013) Ionic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility. Green Chem 15:2110-2120

    Google Scholar 

  17. (a) Palit S, Bera S, Singh M, Mondal D (2015) Synthesis of novel indazole-derived ionic liquids. Synthesis 47:3371–3384; (b) Goel K, Bera S, Singh M, Mondal D (2016) Synthesis of dual functional pyrimidinium ionic liquids as reaction media and antimicrobial agents. RSC Adv 6:106806–106820

    Google Scholar 

  18. Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F (2016) Structure–antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: effect of alkyl chain length and cations. ACS Appl Mater Interfaces 8:12684–12692

    Article  CAS  Google Scholar 

  19. (a) Wianiewska A, Lipiski PFJ, Woeniak K, Sanjuan-Szklarz FW, Cieniecka-Ros Onkiewicz A, Michalczyk A, Browski ZD, Kulig-Adamiak A, Ska JM, Lea A, Cybulski J (2016) Synthesis and antimicrobial properties of new mandelate ionic liquids. Acta Pol Pharm Drug Res 73:705–715; (b) Cybulski J, Wiśniewska A, Kulig-Adamiak A, Dabrowski Z, Praczyk T, Michalczyk A, et al (2011) Mandelate and prolinate ionic liquids: synthesis, characterization, catalytic and biological activity. Tetrahedron Lett 52:1325–1328; (c) Hodyna D, Kovalishyn V, Rogalsky S, Blagodatnyi V, Petko K, Metelytsia L (2016) Antibacterial activity of imidazolium‐based ionic liquids investigated by QSAR modeling and experimental studies. Chem Biol Drug Des 88:422–433; (d) Jofre LAG, Forero-Doria O, Castro R, Gonzalez D, Alarcon C (2016) Antibacterial activity of N-styryl alkylimidazolium ionic liquids. Clin Microbiol 5:5. https://doi.org/10.4172/2327-5073.C1.025; (e) Bergamo VZ, Donato RK, Dalla Lana DF, Donato KJ, Ortega GG, Schrekker HS, Fuentefria AM (2015) Imidazolium salts as antifungal agents: strong antibiofilm activity against multidrug-resistant Candida tropicalis isolates. Lett Appl Microbiol 60:66–71; (f) Messali M, Ziad Moussa AY, Alzahrani MY, El-Naggar ASE, Douhaibi ZMA, Judeh BH (2013) Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere 91:1627–1634

  20. (a) Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302:792–793; (b) Hough-Troutman WL, Smiglak M, Griffin S, Reichert WM, Mirska I, Jodynis-Liebert J, Adamska T, Nawrot J, Stasiewicz M, Rogers RD, Pernak J (2009) Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J Chem 33:26–33; (c) Kumar V, Malhotra SV (2009) Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg Med Chem Lett 19:4643–4646; (d) Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium‐based ionic liquids. Chem - A Eur J 11:4441–4449; (e) Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH Jr, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436; (f) Shamshina JL, Berton P, Wang H, Zhou X, Gurau G, Roger RD Green techniques and strategies in the pharmaceutical industry: ionic liquids in pharmaceutical industry. In: Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd Edition, Zhang W, Cue BW (eds), 2018, 539-568, ISBN: 978-1-119-28816-9; (g) Nishi N, Kawakami T, Shigematsu F, Yamamoto M, Kakiuchi T (2006) Fluorine-free and hydrophobic room-temperature ionic liquids, tetraalkylammonium bis(2-ethylhexyl)sulfosuccinates, and their ionic liquid–water two-phase properties. Green Chem 8:349–355

    Google Scholar 

Download references

Acknowledgments

SB thanks the Department of Science and Technology, New Delhi, for the financial support of WOS-A-project (WOS-A/CS-63/2013(G)). We also thank the Central University of Gujarat for infrastructure facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjoy Mondal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mondal, D., Bera, S. (2019). Nontoxic Ionic Liquids: Emerging Substitute for Classical Antimicrobial Materials. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics