Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Ionic Liquids as Solvents for the Production of Materials from Biomass

  • Louis M. Hennequin
  • Oliver Levers
  • Jason P. HallettEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_50-1


In recent years, the utilization of renewable resources for the production of sustainable materials has gained attention worldwide due to increasing environmental awareness. The environmental damage of oil extraction and cracking, its effect on climate change, and its pollution from nonbiodegradable products have driven a rapidly growing shift in consumer demand away from fossil-derived materials and toward bioderived materials. Lignocellulosic biomass has the potential to provide for our needs of materials and chemicals. It does not compete with food crops, is abundant, biodegradable, and nonpolluting. However, the production of materials from biomass is still a technological and economical challenge that we must overcome in order to secure a sustainable transition from fossil fuels resources. This challenge arises due to the chemical complexity of lignocellulosic biomass and the limited adaptability of petrochemical processes that are currently used.

Materials are very...

This is a preview of subscription content, log in to check access.


  1. 1.
    Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617PubMedCrossRefGoogle Scholar
  2. 2.
    Comission E (2015) The land use change impact of biofuels consumed in the EU: quantification of area and greenhouse gas impacts. ECOFYS Netherlands B.V, UtrechtGoogle Scholar
  3. 3.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRefGoogle Scholar
  4. 4.
    Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  5. 5.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  6. 6.
    Henniges U, Schiehser S, Rosenau T, Potthast A (2010) Cellulose solubility: dissolution and analysis of “problematic” cellulose pulps in the solvent system DMAc/LiCl. ACS Symp Ser 1033:165–177CrossRefGoogle Scholar
  7. 7.
    Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32CrossRefGoogle Scholar
  8. 8.
    Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide-water solutions. Cellulose 16:179–188CrossRefGoogle Scholar
  9. 9.
    Bi R, Lawoko M, Henriksson G (2016) Phoma herbarum, a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. J Ind Microbiol Biotechnol 43:1175–1182PubMedCrossRefGoogle Scholar
  10. 10.
    Caesar-TonThat TC, Cochran VL (2000) Soil aggregate stabilization by a saprophytic lignin-decomposing basidiomycete fungus I. Microbiological aspects. Biol Fertil Soils 32:374–380CrossRefGoogle Scholar
  11. 11.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zakzeski J, Bruijnincx Pieter CA, Jongerius Anna L, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599PubMedCrossRefGoogle Scholar
  13. 13.
    Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58PubMedCrossRefGoogle Scholar
  14. 14.
    Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297CrossRefGoogle Scholar
  15. 15.
    Brandt A, Gräsvik J, Hallett JP et al (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550CrossRefGoogle Scholar
  16. 16.
    Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381PubMedCrossRefGoogle Scholar
  17. 17.
    Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872–1880PubMedCrossRefGoogle Scholar
  18. 18.
    Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206CrossRefGoogle Scholar
  19. 19.
    Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679CrossRefGoogle Scholar
  20. 20.
    Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047CrossRefGoogle Scholar
  21. 21.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar
  22. 22.
    Viell J, Marquardt W (2012) Concentration measurements in ionic liquid–water mixtures by mid-infrared spectroscopy and indirect hard modeling. Appl Spectrosc 66:208–217PubMedCrossRefGoogle Scholar
  23. 23.
    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRefGoogle Scholar
  24. 24.
    Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965PubMedCrossRefGoogle Scholar
  25. 25.
    Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148PubMedCrossRefGoogle Scholar
  26. 26.
    Leskinen T, King AWT, Kilpeläinen I, Argyropoulos DS (2011) Fractionation of lignocellulosic materials with ionic liquids. 1. Effect of mechanical treatment. Ind Eng Chem Res 50:12349–12357CrossRefGoogle Scholar
  27. 27.
    Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575PubMedCrossRefGoogle Scholar
  28. 28.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150PubMedCrossRefGoogle Scholar
  29. 29.
    García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV (2015) Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem 17:2693–2713CrossRefGoogle Scholar
  30. 30.
    Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339CrossRefGoogle Scholar
  31. 31.
    Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102CrossRefGoogle Scholar
  32. 32.
    Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489CrossRefGoogle Scholar
  33. 33.
    Brandt A, Chen L, Van Dongen BE, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem.  https://doi.org/10.1039/c5gc01314cCrossRefGoogle Scholar
  34. 34.
    Zoia L, King AWT, Argyropoulos DS (2011) Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. J Agric Food Chem 59:829–838PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ab Rani MA, Brant A, Crowhurst L et al (2011) Understanding the polarity of ionic liquids. Phys Chem Chem Phys 13:16831–16840PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kahlen J, Masuch K, Leonhard K (2010) Modelling cellulose solubilities in ionic liquids using COSMO-RS. Green Chem 12:2172–2181CrossRefGoogle Scholar
  37. 37.
    Khan N, Moens L (2002) Room-temperature ionic liquids as new solvents for carbohydrate chemistry: a new tool for the processing of biomass feedstocks? Ion Liq 28:360–372CrossRefGoogle Scholar
  38. 38.
    Lundahl MJ, Klar V, Wang L, Ago M, Rojas OJ (2017) Spinning of cellulose nanofibrils into filaments: a review. Ind Eng Chem Res 56:8–19CrossRefGoogle Scholar
  39. 39.
    Fan Z, Chen J, Guo W, Ma F, Sun S, Zhou Q (2018) Anti-solvents tuning cellulose nanoparticles through two competitive regeneration routes. Cellulose 25:4513–4523CrossRefGoogle Scholar
  40. 40.
    Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290CrossRefGoogle Scholar
  42. 42.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  43. 43.
    Salam A, Venditti RA, Joel J, El-tahlawy K, Ayoub A (2012) Extraction and utilization of hemicelluloses for new biomaterial extraction and utilization of hemicelluloses for new biomaterial applications. Paper presented at the 4th International Conference on Pulping, Papermaking and Biotechnology, Nanjing Forestry University, China, 7 November 2012Google Scholar
  44. 44.
    Dutta T, Isern NG, Sun J, Wang E, Hull S, Cort JR, Simmons BA, Singh S (2017) Survey of lignin-structure changes and depolymerization during ionic liquid pretreatment. ACS Sustain Chem Eng 5:10116–10127CrossRefGoogle Scholar
  45. 45.
    Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218CrossRefGoogle Scholar
  46. 46.
    Evdokimov AN, Kurzin AV, Fedorova OV, Lukanin PV, Kazakov VG, Trifonova AD (2018) Desulfurization of kraft lignin. Wood Sci Technol 52:1165–1174CrossRefGoogle Scholar
  47. 47.
    Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550CrossRefGoogle Scholar
  48. 48.
    Hulsbosch J, De Vos DE, Binnemans K, Ameloot R (2016) Biobased ionic liquids: solvents for a green processing industry? ACS Sustain Chem Eng 4:2917–2931CrossRefGoogle Scholar
  49. 49.
    Hou XD, Smith TJ, Li N, Zong MH (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493PubMedCrossRefGoogle Scholar
  50. 50.
    Hou XD, Li N, Zong MH (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids–water mixtures. ACS Sustain Chem Eng 1:519–526CrossRefGoogle Scholar
  51. 51.
    Hou XD, Xu J, Li N, Zong MH (2015) Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol Bioeng 112:65–73PubMedCrossRefGoogle Scholar
  52. 52.
    Liu QP, Hou XD, Li N, Zong MH (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307CrossRefGoogle Scholar
  53. 53.
    Sun N, Parthasarathi R, Socha AM, Shi J, Zhang S, Stavila V, Sale KL, Simmons BA, Singh S (2014) Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chem 16:2546–2557CrossRefGoogle Scholar
  54. 54.
    Kim KH, Dutta T, Ralph J, Mansfield SD, Simmons BA, Singh S (2017) Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnol Biofuels 10:101PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of Loblolly pine. Energy Fuel.  https://doi.org/10.1021/ef900845tCrossRefGoogle Scholar
  56. 56.
    El HR, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab.  https://doi.org/10.1016/j.polymdegradstab.2009.07.007CrossRefGoogle Scholar
  57. 57.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96CrossRefGoogle Scholar
  58. 58.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201510351PubMedCrossRefGoogle Scholar
  59. 59.
    Sievers DA, Tao L, Schell DJ (2014) Performance and techno-economic assessment of several solid–liquid separation technologies for processing dilute-acid pretreated corn stover. Bioresour Technol.  https://doi.org/10.1016/j.biortech.2014.05.113PubMedCrossRefGoogle Scholar
  60. 60.
    Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose.  https://doi.org/10.1007/JHEP10(2014)085
  61. 61.
    Tao L, Aden A (2011) The economics of current and future biofuels. Biofuels Global Impact Renewable Energy, Prod Agric Technol Ad.  https://doi.org/10.1007/978-1-4419-7145-6_4Google Scholar
  62. 62.
    Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843PubMedCrossRefGoogle Scholar
  63. 63.
    Narron RH, Kim H, Chang HM, Jameel H, Park S (2016) Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol.  https://doi.org/10.1016/j.copbio.2015.12.018PubMedCrossRefGoogle Scholar
  64. 64.
    Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass, volume II – results of screening for potential candidates from biorefinery lignin. U.S. Department of Energy, Washington, DC.  https://doi.org/10.2172/921839CrossRefGoogle Scholar
  65. 65.
    Cherubini F, Strømman AH (2011) Principles of biorefining. In: Biofuels. Academic, Burlington, pp 3–24CrossRefGoogle Scholar
  66. 66.
    Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306PubMedCrossRefGoogle Scholar
  67. 67.
    Sun KK, Lu GP, Zhang JW, Cai C (2017) The selective hydrogenolysis of C–O bonds in lignin model compounds by Pd–Ni bimetallic nanoparticles in ionic liquids. Dalton Trans 46:11884–11889PubMedCrossRefGoogle Scholar
  68. 68.
    Liu F, Liu Q, Wang A, Zhang T (2016) Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustain Chem Eng 4:3850–3856CrossRefGoogle Scholar
  69. 69.
    Deuss PJ, Barta K (2016) From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord Chem Rev 306:510–532CrossRefGoogle Scholar
  70. 70.
    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624PubMedCrossRefGoogle Scholar
  71. 71.
    Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin – recent routes reviewed. Eur Polym J 49:1151–1173CrossRefGoogle Scholar
  72. 72.
    Chatel G, Rogers RD (2014) Review. Oxidation of lignin using ionic liquids – an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339CrossRefGoogle Scholar
  73. 73.
    Dai J, Patti AF, Saito K (2016) Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 57:4945–4951CrossRefGoogle Scholar
  74. 74.
    Gillet S, Aguedo M, Petitjean L, Morais ARC, Da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233CrossRefGoogle Scholar
  75. 75.
    Janesko BG (2011) Modeling interactions between lignocellulose and ionic liquids using DFT-D. Phys Chem Chem Phys 13:11393–11401PubMedCrossRefGoogle Scholar
  76. 76.
    Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]-based solvent production at bulk scale. Green Chem 16:3098–3106CrossRefGoogle Scholar
  77. 77.
    Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18:834–841CrossRefGoogle Scholar
  78. 78.
    Li Y, Cai Z, Liao M, Long J, Zhao W, Chen Y, Li X (2017) Catalytic depolymerization of organosolv sugarcane bagasse lignin in cooperative ionic liquid pairs. Catal Today 298:168–174CrossRefGoogle Scholar
  79. 79.
    Dier TKF, Rauber D, Durneata D, Hempelmann R, Volmer DA (2017) Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci Rep 7:1–12CrossRefGoogle Scholar
  80. 80.
    Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354:329–333PubMedCrossRefGoogle Scholar
  81. 81.
    Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605PubMedCrossRefGoogle Scholar
  82. 82.
    Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852PubMedCrossRefGoogle Scholar
  83. 83.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265PubMedCrossRefGoogle Scholar
  84. 84.
    Nguyen HTH, Qi P, Rostagno M, Feteha A, Miller SA (2018) The quest for high glass transition temperature bioplastics. J Mater Chem A 6:9298–9331CrossRefGoogle Scholar
  85. 85.
    Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46CrossRefGoogle Scholar
  86. 86.
    Fache M, Boutevin B, Caillol S (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polym J 68:488–502CrossRefGoogle Scholar
  87. 87.
    Holmberg AL, Stanzione JF, Wool RP, Epps TH (2014) A facile method for generating designer block copolymers from functionalized lignin model compounds. ACS Sustain Chem Eng.  https://doi.org/10.1021/sc400497aCrossRefGoogle Scholar
  88. 88.
    Holmberg AL, Reno KH, Nguyen NA, Wool RP, Epps TH (2016) Syringyl methacrylate, a hardwood lignin-based monomer for high-Tg polymeric materials. ACS Macro Lett.  https://doi.org/10.1021/acsmacrolett.6b00270PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhou J, Zhang H, Deng J, Wu Y (2016) High glass-transition temperature acrylate polymers derived from biomasses, syringaldehyde, and vanillin. Macromol Chem Phys.  https://doi.org/10.1002/macp.201600305CrossRefGoogle Scholar
  90. 90.
    Amarasekara AS, Wiredu B, Razzaq A (2012) Vanillin based polymers: I. An electrochemical route to polyvanillin. Green Chem 14:2395–2397CrossRefGoogle Scholar
  91. 91.
    Sun Z, Fridrich B, De Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev.  https://doi.org/10.1021/acs.chemrev.7b00588PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pemba AG, Rostagno M, Lee TA, Miller SA (2014) Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics. Polym Chem 5:3214–3221CrossRefGoogle Scholar
  93. 93.
    Rostagno M, Price EJ, Pemba AG, Ghiriviga I, Abboud KA, Miller SA (2016) Sustainable polyacetals from erythritol and bioaromatics. J Appl Polym Sci.  https://doi.org/10.1002/app.44089
  94. 94.
    Llevot A, Grau E, Carlotti S, Grelier S, Cramail H (2016) From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 37:9–28PubMedCrossRefGoogle Scholar
  95. 95.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40CrossRefGoogle Scholar
  96. 96.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRefGoogle Scholar
  97. 97.
    Mahmood N, Yuan Z, Schmidt J, Xu C (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev 60:317–329CrossRefGoogle Scholar
  98. 98.
    Feghali E, Torr KM, van de Pas DJ, Ortiz P, Vanbroekhoven K, Eevers W, Vendamme R (2018) Thermosetting polymers from lignin model compounds and depolymerized lignins. Top Curr Chem 376:32CrossRefGoogle Scholar
  99. 99.
    Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448CrossRefGoogle Scholar
  100. 100.
    Tisserat B, Larson E, Gray D, Dexter N, Meunier C, Moore L, Haverhals L (2015) Ionic liquid-facilitated preparation of lignocellulosic composites. Int J Polym Sci.  https://doi.org/10.1155/2015/181097CrossRefGoogle Scholar
  101. 101.
    Mahmood H, Moniruzzaman M, Yusup S, Welton T (2017) Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem 19:2051–2075CrossRefGoogle Scholar
  102. 102.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRefGoogle Scholar
  103. 103.
    Cateto CA, Barreiro MF, Ottati C, Lopretti M, Rodrigues AE, Belgacem MN (2014) Lignin-based rigid polyurethane foams with improved biodegradation. J Cell Plast 50:81–95CrossRefGoogle Scholar
  104. 104.
    Younesi-Kordkheili H, Pizzi A, Honarbakhsh-Raouf A, Nemati F (2017) The effect of soda bagasse lignin modified by ionic liquids on properties of the urea–formaldehyde resin as a wood adhesive. J Adhes 93:914–925CrossRefGoogle Scholar
  105. 105.
    Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641CrossRefGoogle Scholar
  106. 106.
    Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63PubMedCrossRefGoogle Scholar
  107. 107.
    Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574PubMedCrossRefGoogle Scholar
  108. 108.
    Kim SH, Kim MH, Kim JH, Park S, Kim H, Won K, Lee SH (2015) Preparation of artificial wood films with controlled biodegradability. J Appl Polym Sci.  https://doi.org/10.1002/app.42109CrossRefGoogle Scholar
  109. 109.
    Livi S, Bugatti V, Marechal M, Soares BG, Barra GMO, Duchet-Rumeau J, Gérard JF (2015) Ionic liquids–lignin combination: an innovative way to improve mechanical behaviour and water vapour permeability of eco-designed biodegradable polymer blends. RSC Adv 5:1989–1998CrossRefGoogle Scholar
  110. 110.
    Byrne N, De Silva R, Ma Y, Sixta H, Hummel M (2018) Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 25:723–733CrossRefGoogle Scholar
  111. 111.
    Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250CrossRefGoogle Scholar
  112. 112.
    Olsson C, Sjöholm E, Reimann A (2017) Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps. Holzforschung 71:275–283CrossRefGoogle Scholar
  113. 113.
    Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161CrossRefGoogle Scholar
  114. 114.
    Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616PubMedCrossRefGoogle Scholar
  115. 115.
    Polaskova M, Cermak R, Verney V, Ponizil P, Commereuc S, Gomes MFC, Padua AAH, Mokrejs P, MacHovsky M (2013) Preparation of microfibers from wood/ionic liquid solutions. Carbohydr Polym 92:214–217PubMedCrossRefGoogle Scholar
  116. 116.
    Ma Y, Stubb J, Kontro I, Nieminen K, Hummel M, Sixta H (2018) Filament spinning of unbleached birch kraft pulps: effect of pulping intensity on the processability and the fiber properties. Carbohydr Polym 179:145–151PubMedCrossRefGoogle Scholar
  117. 117.
    Vincent S, Prado R, Kuzmina O et al (2018) Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustain Chem Eng 6:5903–5910CrossRefGoogle Scholar
  118. 118.
    Ma Y, Hummel M, Määttänen M, Särkilahti A, Harlin A, Sixta H (2016) Upcycling of waste paper and cardboard to textiles. Green Chem 18:858–866CrossRefGoogle Scholar
  119. 119.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater.  https://doi.org/10.1021/acs.chemmater.7b00531CrossRefGoogle Scholar
  120. 120.
    Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  121. 121.
    Nie J, Pei B, Wang Z, Hu Q (2019) Construction of ordered structure in polysaccharide hydrogel: a review. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2018.10.033PubMedCrossRefGoogle Scholar
  122. 122.
    Li H, Tan C, Li L (2018) Review of 3D printable hydrogels and constructs. Mater Des.  https://doi.org/10.1016/j.matdes.2018.08.023CrossRefGoogle Scholar
  123. 123.
    Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  124. 124.
    Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12:1860–1867PubMedCrossRefGoogle Scholar
  125. 125.
    Jin C, Han S, Li J, Sun Q (2015) Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr Polym 123:150–156PubMedCrossRefGoogle Scholar
  126. 126.
    Shibata M, Yamazoe K, Kuribayashi M, Okuyama Y (2013) All-wood biocomposites by partial dissolution of wood flour in 1-butyl-3-methylimidazolium chloride. J Appl Polym Sci 127:4802–4808CrossRefGoogle Scholar
  127. 127.
    Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374PubMedCrossRefGoogle Scholar
  128. 128.
    Milczarek G, Nowicki M (2013) Carbon nanotubes/kraft lignin composite: characterization and charge storage properties. Mater Res Bull 48:4032–4038CrossRefGoogle Scholar
  129. 129.
    Klose M, Reinhold R, Logsch F et al (2017) Softwood lignin as a sustainable feedstock for porous carbons as active material for supercapacitors using an ionic liquid electrolyte. ACS Sustain Chem Eng 5:4094–4102CrossRefGoogle Scholar
  130. 130.
    Szalaty TJ, Klapiszewski Ł, Kurc B, Skrzypczak A, Jesionowski T (2018) A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. J Mol Liq 261:456–467CrossRefGoogle Scholar
  131. 131.
    Casado N, Hilder M, Pozo-Gonzalo C, Forsyth M, Mecerreyes D (2017) Electrochemical behavior of PEDOT/lignin in ionic liquid electrolytes: suitable cathode/electrolyte system for sodium batteries. ChemSusChem 10:1783–1791PubMedCrossRefGoogle Scholar
  132. 132.
    Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRefGoogle Scholar
  133. 133.
    Auxenfans T, Buchoux S, Larcher D, Husson E, Sarazin C (2014) Enzymatic saccharification and structural properties of industrial wood sawdust: recycled ionic liquids pretreatments. Energy Convers Manag 88:1094–1103CrossRefGoogle Scholar
  134. 134.
    Qiu Z, Aita GM (2013) Pretreatment of energy cane bagasse with recycled ionic liquid for enzymatic hydrolysis. Bioresour Technol 129:532–537PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Louis M. Hennequin
    • 1
  • Oliver Levers
    • 1
  • Jason P. Hallett
    • 1
    Email author
  1. 1.Department of Chemical EngineeringImperial College of LondonLondonUK

Section editors and affiliations

  • Toshiyuki Itoh
    • 1
  • Jian Sun
    • 2
  1. 1.Graduate School of EngineeringTottori UniversityTottori CityJapan
  2. 2.Beijing Institute of TechnologyBeijingChina