Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Design of Amino Acid ILs for Dissolution of Lignocellulosic Biomass

  • Toshiyuki ItohEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_48-1


Cellulose consists of linear glucose polymer chains that form a very tight hydrogen-bonded supramolecular structure, and the multiple hydrogen bond among the cellulose molecules results in the formation of highly ordered crystalline regions [1]. Hence, cellulose does not dissolve in water and common organic solvents under ambient conditions. Since chemical or enzymatic reactions are generally conducted in solution, extensive studies for the development of cellulose dissolving liquids have been attempted. However, there are limited examples of such solvent systems, and they all require large quantities of hazardous chemicals and high temperatures [2]. Therefore, development of more safe and efficient cellulose dissolution liquids is needed from the standpoint of green chemistry [2].

Ionic liquids (ILs) are molten salts that melt below 100 °C [3] and have many unique chemical and physical properties. They are attractive alternatives to organic solvents due to their high...

This is a preview of subscription content, log in to check access.


  1. 1.
    Libert T (2010) Cellulose solvents-remarkable history, bright future. In: Liebert T, Heinz TJ, Edgar KJ (eds) Cellulose solvent: for analysis, shaping and chemical modification. ACS symposium series, vol 1033, ch 1. American Chemical Society, Washington, DC, pp 3–54.  https://doi.org/10.1021/bk-2010-1033Google Scholar
  2. 2.
    Hendriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585.  https://doi.org/10.1021/bm800038nCrossRefGoogle Scholar
  3. 3.
    IL review: (a) Hallett JP, Welton T (2011) Room temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev 111:3508–3576.  https://doi.org/10.1021/cr1003248. (b) Plaquevent J-C, Levillain J, Guillen F et al (2008) Ionic liquids: new targets and media for α-amino acid and peptide chemistry. Chem Rev 108:5035–5060.  https://doi.org/10.1021/cr068218c
  4. 4.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975.  https://doi.org/10.1021/ja025790mCrossRefPubMedGoogle Scholar
  5. 5.
    Pinkert A, Marsh KN, Pang S et al (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728.  https://doi.org/10.1021/cr9001947CrossRefPubMedGoogle Scholar
  6. 6.
    Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7.  https://doi.org/10.1246/cl.2009.2CrossRefGoogle Scholar
  7. 7.
    Kamlet MJ, Abboud J-L, Taft RW (1977) The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities. J Am Chem Soc 99:6027–6038.  https://doi.org/10.1021/ja00460a031CrossRefGoogle Scholar
  8. 8.
    Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351.  https://doi.org/10.1039/B500106BCrossRefGoogle Scholar
  9. 9.
    Fukaya Y, Hayashi K, Wada M et al (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46.  https://doi.org/10.1039/B713289ACrossRefGoogle Scholar
  10. 10.
    Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280.  https://doi.org/10.1039/C003976DCrossRefGoogle Scholar
  11. 11.
    Fukaya Y, Asai R-i, Kadotani S, Nokami T, Itoh T (2016) Extraction of polysaccharides from Japanese cedar using phosphonate-derived polar ionic liquids having functional groups. Bull Chem Soc Jpn 89:879–886.  https://doi.org/10.1246/bcsj.20160073CrossRefGoogle Scholar
  12. 12.
    Notenboom V, Boraston AB, Kilburn DG et al (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemist 40:6248–6256.  https://doi.org/10.1021/bi0101704CrossRefGoogle Scholar
  13. 13.
    Zou JY, Kleywegt GJ, Stahlberg J et al (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure 7:1035–1045.  https://doi.org/10.1016/S0969-2126(99)80171-3CrossRefPubMedGoogle Scholar
  14. 14.
    Fukumoto TK, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127:2398–2399.  https://doi.org/10.1021/ja043451iCrossRefPubMedGoogle Scholar
  15. 15.
    Muhammad N, Man Z, Bustam MZ, Mutalib MI, Wilfred CD, Sikander Rafiq S (2011) Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Appl Biochem Biotechnol 165:998–1009.  https://doi.org/10.1007/s12010-011-9315-yCrossRefPubMedGoogle Scholar
  16. 16.
    Ohira K, Abe Y, Suzuki K et al (2012) Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 5:388–391.  https://doi.org/10.1002/cssc.201100427CrossRefPubMedGoogle Scholar
  17. 17.
    Dong Y, Takeshita T, Miyafuji H, Nokami T, Itoh T (2018) Direct extraction of polysaccharides from moso bamboo (Phylostachys heterocycla) chips using a mixed solvent system of an amino acid ionic liquid with polar aprotic solvent. Bull Chem Soc Jpn 91:398–404.  https://doi.org/10.1246/bcsj.20170383CrossRefGoogle Scholar
  18. 18.
    Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98(100):23–35.  https://doi.org/10.1385/ABAB:98-100:1-9:23CrossRefPubMedGoogle Scholar
  19. 19.
    Bellesia G, Chundawat SPS, Langan P et al (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788.  https://doi.org/10.1021/jp2048844CrossRefPubMedGoogle Scholar
  20. 20.
    Hamada Y, Yoshida Y, Asai R-i, Hayase S, Nokami T, Izumi S, Itoh T (2013) Possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem 15:1863–1868.  https://doi.org/10.1039/C3GC40445ECrossRefGoogle Scholar
  21. 21.
    Liu Q-P, Hou X-D, Li N, Zong M-H (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307.  https://doi.org/10.1039/C2GC16128ACrossRefGoogle Scholar
  22. 22.
    Hou X-D, Smith TJ, Li N, Zong M-H (2012) Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol Bioeng 109:2484–2493.  https://doi.org/10.1002/bit.24522CrossRefPubMedGoogle Scholar
  23. 23.
    Hou X-D, Li N, Zong M-H (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids−water mixtures. ACS Sustain Chem Eng 1:519–526.  https://doi.org/10.1021/sc300172vCrossRefGoogle Scholar
  24. 24.
    Hou X-D, Jie Xu J, Li N, Zong M-H (2015) Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol Bioeng 112:65–73.  https://doi.org/10.1002/bit.24522CrossRefPubMedGoogle Scholar
  25. 25.
    To TQ, Shah K, Tremain P, Simmons BA, Moghtaderi B, Atkin R (2017) Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel 202:296–306.  https://doi.org/10.1016/j.fuel.2017.04.051CrossRefGoogle Scholar
  26. 26.
    Tao J, Kishimoto T, Hamada M, Nakajima N (2016) Novel cellulose pretreatment solvent: phosphonium-based amino acid ionic liquid/cosolvent for enhanced enzymatic hydrolysis. Holzforschung 70(10):911–917.  https://doi.org/10.1515/hf-2016-0017CrossRefGoogle Scholar
  27. 27.
    Tao J, Kishimoto T, Hamada M, Nakajima N (2017) Enzymatic synthesis of methyl β-d-glucoside directly from cellulose pretreated with biocompatible amino acid ionic liquid/cosolvent. Holzforschung 71(1):21–26.  https://doi.org/10.1515/hf-2016-0091CrossRefGoogle Scholar
  28. 28.
    Tian T-C, Xie C-X, Li L, Wei Q-L, Yu S-T, Zhang T-I (2016) Research on the structure of amino acid ILs and its solubility for chitosan with chemical software. Polym Degrad Stab 126:17–21.  https://doi.org/10.1016/j.polymdegradstab.2016.01.010CrossRefGoogle Scholar
  29. 29.
    Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511–513.  https://doi.org/10.1039/C0CC02421JCrossRefGoogle Scholar
  30. 30.
    Ohira K, Yoshida K, Itoh T et al (2012) Amino acid ionic liquid as an efficient cosolvent of dimethyl sulfoxide to realize cellulose dissolution at room temperature. Chem Lett 41:987–989.  https://doi.org/10.1246/cl.2012.987CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiotechnologyGraduate School of Engineering, Tottori UniversityTottoriJapan
  2. 2.Center for Research on Green Sustainable Chemistry, Tottori UniversityTottoriJapan

Section editors and affiliations

  • Toshiyuki Itoh
    • 1
  • Jian Sun
    • 2
  1. 1.Graduate School of EngineeringTottori UniversityTottori CityJapan
  2. 2.Beijing Institute of TechnologyBeijingChina