Skip to main content

Morpholinium Ionic Liquids and Piperazinium Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 123 Accesses

Introduction

Ionic liquids are low-temperature molten salts composed of organic cations and inorganic anions or organic anions. In recent years [1], as the concept of green chemistry has gradually entered people’s vision [2], ionic liquids have begun to attract the attention and competition of scientists from various countries [3], which will play an important role in promoting the future development of humanity [4]. Ionic liquids have excellent physical and chemical properties, such as good thermal stability [5], wide electrochemical window [6], high conductivity, good solubility, good acid-base stability, low vapor pressure, nonvolatile, etc. [7]. At the same time, the synthesis process is simple and easy to recycle and has a broad application space [8]. By controlling the composition of anions and cations of ionic liquids, the density, viscosity [9], surface tension [10], acidity [11], coordination ability [12], and polarity of ionic liquids can be changed [13]. Therefore, they are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhao D, Min W, Yuan K, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74(1):157–189

    Article  CAS  Google Scholar 

  2. Valkenberg MH, Decastro C, Hölderich WF (2000) Immobilisation of chloroaluminate ionic liquids on silica materials. Green Chem 14:139–144

    CAS  Google Scholar 

  3. Earle MJ, Seddon KR (2010) Ionic liquids: green solvents for the future. Pure Appl Chem 2000(72):1391–1398

    Google Scholar 

  4. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399

    Article  CAS  PubMed  Google Scholar 

  5. Laali KK (2003) Ionic liquids in synthesis. Synthesis 11:1752–1752

    Article  Google Scholar 

  6. Lau RM, Rantwijk FV, Seddon KR, Sheldon RA (2010) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4196

    Google Scholar 

  7. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  PubMed  Google Scholar 

  8. Gordon CM (2010) New developments in catalysis using ionic liquids. Appl Catal A Gen 222(1):101–117

    Google Scholar 

  9. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2001:2399–2407

    Google Scholar 

  10. Aparicio S, Atilhan M (2013) On the properties of CO2 and flue gas at the piperazinium-based ionic liquids interface: a molecular dynamics study. J Phys Chem C 117:15061–15074

    Article  CAS  Google Scholar 

  11. Babiker OE, Shuhaimi M, Mutalib MIA (2014) Molecular simulation for piperazinium based ILs: effects of alkyl chain, concentration and anions on henry’s constants. Appl Mech Mater 625:448–453

    Article  CAS  Google Scholar 

  12. Cha JH, Ha C, Kang SP, Kang JW, Kim KS (2016) Thermodynamic inhibition of CO2 hydrate in the presence of morpholinium and piperidinium ionic liquids. Fluid Phase Equilib 413:75–79

    Article  CAS  Google Scholar 

  13. Cha JH, Kim KS, Lee H (2009) Size-selective Pd nanoparticles stabilized by dialkylmorpholinium ionic liquids. Korean J Chem Eng 26:760–764

    Article  CAS  Google Scholar 

  14. Chaban VV, Prezhdo OV (2015) Are fluorination and chlorination of morpholinium-based ionic liquids favorable? J Phys Chem B 119:9920–9924

    Article  CAS  PubMed  Google Scholar 

  15. Hayyan M, Mjalli FS, Hashim MA, Alnashef IM (2012) Generation of superoxide ion in pyridinium, morpholinium, ammonium, and sulfonium-based ionic liquids and the application in the destruction of toxic chlorinated phenols. Ind Eng Chem Res 51:10546–10556

    Article  CAS  Google Scholar 

  16. Ibrahim MH, Hayyan M, Hashim MA, Hayyan A, Hadj-Kali MK (2016) Physicochemical properties of piperidinium, ammonium, pyrrolidinium and morpholinium cations based ionic liquids paired with bis(trifluoromethylsulfonyl)imide anion. Fluid Phase Equilib 427:18–26

    Article  CAS  Google Scholar 

  17. Kamboj R, Bharmoria P, Chauhan V, Singh S, Kumar A, Mithu VS, Kang TS (2014) Micellization behavior of morpholinium-based amide-functionalized ionic liquids in aqueous media. Langmuir 30:9920–9930

    Article  CAS  PubMed  Google Scholar 

  18. Kim HT, Hong YK, Kang JW, Lee YW, Kim KS (2012) Thermal and electrochemical stability of morpholinium ionic liquids. Korean Chem Eng Res 50:702–707

    Article  CAS  Google Scholar 

  19. Dhakal P, Weise AR, Fritsch MC, O’Dell CM, Paluch AS (2020) Expanding the solubility parameter method MOSCED to pyridinium-, quinolinium-, pyrrolidinium-, piperidinium-, bicyclic-, morpholinium-, ammonium-, phosphonium-, and sulfonium-based ionic liquids. ACS Omega 5:3863–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Królikowska M, Zawadzki M (2017) Transport properties and thermodynamic characterization of aqueous solutions of morpholinium-based ionic liquids. J Mol Liq 251:358–368

    Article  CAS  Google Scholar 

  21. Lee W, Shin JY, Kim KS, Kang SP (2016) Kinetic promotion and inhibition of methane hydrate formation by morpholinium ionic liquids with chloride and tetrafluoroborate anions. Energy Fuel 30:3879–3885

    Article  CAS  Google Scholar 

  22. Marcinkowski U, Kloskowski A, Warmińska D (2018) Solvation of ionic liquids based on N-methyl-N- alkylmorpholinium cations in N,N -dimethylformamide and N,N-dimethylacetamide-volumetric and compressibility studies. J Chem Thermodyn 119:92–101

    Article  CAS  Google Scholar 

  23. Marcinkowski U, Olszewska T, Kloskowski A, Warmińska D (2014) Apparent molar volumes and expansivities of ionicliquids based on N-alkyl-N-methylmorpholinium cations in acetonitrile. J Chem Eng Data 59:718–725

    Article  CAS  Google Scholar 

  24. Marcinkowski U, Szepiński E, Kloskowski A, NamieaNik J, Warmińska D (2017) Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide-A volumetric and acoustic study. J Chem Thermodyn 104:91–101

    Article  CAS  Google Scholar 

  25. Park BH, Hyeon SE, Cha JH, Hong YK, Kang JW, Kim KS (2016) Copper nanoparticles stabilized by morpholinium ionic liquids. J Nanosci Nanotechnol 16:11005–11008

    Article  CAS  Google Scholar 

  26. Pezeshki M, Ghatee MH (2018) Properties investigation of protic morpholinium-based ionic liquids by classical molecular dynamics simulation and quantum chemical calculations. J Mol Liq 272:554–564

    Article  CAS  Google Scholar 

  27. Salchner R, Laus G, Haslinger S (2019) One-pot sequential synthesis of 2-amino-4, 6-diaryl pyrimidines involving SO3H− functionalized piperazinium-based dicationic ionic liquids as homogeneous catalysts. ChemistrySelect 4:8751–8756

    Article  CAS  Google Scholar 

  28. Ma C, Shukla SK, Samikannu R, Mikkola JP, Ji X (2020) CO2 separation by a series of aqueous morpholinium-based ionic liquids with acetate anions. ACS Sustain Chem Eng 8:415–426

    Article  CAS  Google Scholar 

  29. Salchner R, Laus G, Haslinger S, Kahlenberg V, Wurst K, Braun DE, Vergeiner S, Kopacka H, Schottenberger H, Puckowski A, Markiewicz M, Stolte S, Nerdinger S (2015) Structural and ecotoxicological profile of N-alkoxymorpholinium-based ionic liquids. Heterocycles 90:1018–1037

    Article  CAS  Google Scholar 

  30. Kahani S, Shafiei M, Abdolmaleki A, Karimi K (2017) Enhancement of ethanol production by novel morpholinium ionic liquids. J Clean Prod 168:952–962

    Article  CAS  Google Scholar 

  31. Goossens K, Lava K, Bielawski CW, Binnemans K (2016) Ionic liquid crystals: versatile materials. Chem Rev 116:4643–4807

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida T, Kawai A, Khara DC, Samanta A (2015) Temporal behavior of the singlet molecular oxygen emission in imidazolium and morpholinium ionic liquids and its implications. J Phys Chem B 119:6696–6702

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Zhang S, Dai Y, Lu X, Lei Q, Fang W (2016) Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids. J Hazard Mater 307:73–81

    Article  CAS  PubMed  Google Scholar 

  34. Yuan Y, Wang TY, Kun W, Li L, Dai Y (2012) Convenient synthesis and application of novel bi-SO3H-functionalized ionic liquids based on piperazinium. Chin Chem Lett 23:1031–1034

    Article  CAS  Google Scholar 

  35. Yue C (2010) Aromatic compounds Mannich reaction using economical acidic ionic liquids based on morpholinium salts as dual solvent-catalysts. Synth Commun 40:3640–3647

    Article  CAS  Google Scholar 

  36. Marciniak A (2012) Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Thermodyn 49:137–145

    Article  CAS  Google Scholar 

  37. Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ (2007) Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid. Korean J Chem Eng 24:1089–1094

    Article  CAS  Google Scholar 

  38. Khalafi-Nezhad A, Panahi F (2014) Size-controlled synthesis of palladium nanoparticles on a silica–cyclodextrin substrate: a novel palladium catalyst system for the Heck reaction in water. ACS Sustain Chem Eng 2:1177–1186

    Article  CAS  Google Scholar 

  39. Khalafi-Nezhad A, Panahi F (2011) Immobilized palladium nanoparticles on a silica–starch substrate (PNP–SSS): as an efficient heterogeneous catalyst for heck and copper-free Sonogashira reactions in water. Green Chem 13:2408–2415

    Article  CAS  Google Scholar 

  40. Yeon SH, Kim KS, Choi S, Cha JH, Lee H, Oh J, Lee BB (2006) Poly(vinylidenefluoride)-hexafluoropropylene gel electrolytes based on N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Korean J Chem Eng 23:940–947

    Article  CAS  Google Scholar 

  41. Yu W, Peng H, Zhang H, Zhou X (2009) Synthesis and mesophase behaviour of morpholinium ionic liquid crystals. Chin J Chem 27:1471–1475

    Article  CAS  Google Scholar 

  42. Yeon SH, Kim KS, Choi S, Lee H, Kim HS, Kim H (2005) Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methyl imidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Electrochim Acta 50:5399–5407

    Article  CAS  Google Scholar 

  43. Ster D, Baumeister U, Chao JL, Tschierskea C, Israel G (2007) Synthesis and mesophase behaviour of ionic liquid crystals. J Mater Chem 17:3393–3400

    Article  CAS  Google Scholar 

  44. Pezeshki M, Ghatee MH (2018) Properties investigation of protic morpholinium-based ionic liquids by molecular dynamics simulation and quantum chemical calculations. J Mol Liq 272:554–564

    Article  CAS  Google Scholar 

  45. Cheng X, Su F, Huang R, Gao H, Prehm M, Tschierske C (2012) Effect of central linkages on mesophase behavior of imidazolium-based rod-like ionic liquid crystals. Soft Matter 8:2274–2285

    Article  CAS  Google Scholar 

  46. Batra D, Seifert S, Firestone MA (2007) The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids. Macromol Chem Phys 208:1416–1427

    Article  CAS  Google Scholar 

  47. Choi S, Kim KS, Lee H, Oh JS, Lee BB (2005) Synthesis and ionic conductivities of lithium-doped morpholinium salt. Korean J Chem Eng 22:281–284

    Article  CAS  Google Scholar 

  48. Kim KS, Park SY, Yeon SH, Lee H (2005) N-Butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl) imide–PVdF(HFP) gel electrolytes. Electrochim Acta 50:5673–5678

    Article  CAS  Google Scholar 

  49. García G, Atilhan M, Aparicio S (2015) Theoretical study on the solvation of C60 fullerene by ionic liquids II: DFT analysis of the interaction mechanism. J Phys Chem B 119:10616–10629

    Article  PubMed  CAS  Google Scholar 

  50. Lu X, Yue L, Hu M, Cao Q, Xu L, Guo Y, Hu S, Fang W (2014) Piperazinium-based ionic liquids with lactate anion for extractive desulfurization of fuels. Energy Fuel 28:1774–1780

    Article  CAS  Google Scholar 

  51. Wang Y, Zhou J, Liu K, Dai L (2013) Novel bi-SO3H-functionalized ionic liquids based on piperazinium: highly efficient and recyclable catalysts for the synthesis of β-acetamido ketones. J Mol Catal A Chem 366:195–201

    Article  CAS  Google Scholar 

  52. Ullah Z, Bustam MA, Man Z, Muhammad N, Khan AS (2015) Synthesis, characterization and the effect of temperature on different physicochemical properties of protic ionic liquids. RSC Adv 5:71449–71461

    Article  CAS  Google Scholar 

  53. Habibi D, Shamsian A (2014) An efficient and recyclable bifunctional acid-base ionic liquid for synthesis of 1H-indazolo[1,2-b]phthalazinetriones. Res Chem Intermed 41:6245–6255

    Article  CAS  Google Scholar 

  54. Gavaskar D, Suresh BAR, Raghunathan R, Dharani M, Balasubramanian S (2014) Ionic liquid accelerated multicomponent sequential assembly of ferrocene grafted spiro-heterocycles. J Organomet Chem 768:128–135

    Article  CAS  Google Scholar 

  55. Lu X, Cao Q, Wu X, Xie H, Lei Q, Fang W (2014) Conformational isomerism influence on the properties of piperazinium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118:9085–9095

    Article  CAS  PubMed  Google Scholar 

  56. Yu J, Zhang S, Dai Y, Lu X, Lei Q, Fang W (2016) Antimicrobial activity and cytotoxicity of piperazinium- andguanidinium-based ionic liquids. J Hazard Mater 307:73–81

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, J.R., Hu, Y.L. (2021). Morpholinium Ionic Liquids and Piperazinium Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics