Encyclopedia of Ionic Liquids

Living Edition
| Editors: Suojiang Zhang

Density of Ionic Liquids

Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-6739-6_106-1
  • 208 Downloads

Introduction

The experimentally measured densities of ionic liquids are important, since they can be used to develop equations of state, which describe non-ideal behavior of ionic liquids. The density and from it derived volumetric parameters of ionic liquids are required for developing new industrial processes [1]. Density is decreasing with increasing temperature due to increasing kinetic energy, which in turn increases the volume of ions. After linear fitting the parameters a and b for the temperature dependence of density are determined from
$$ \rho =b- aT $$
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Sas D, Ivanis OG, Kijevcanin GR, Gonzales ML, Dominguez B, Radovic A (2018) Densities and derived volumetric properties of ionic liquids with [Nf2] and [NTf2] anions at high pressures. J Chem Eng Data 63:954–964CrossRefGoogle Scholar
  2. 2.
    Hudleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and composition of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164CrossRefGoogle Scholar
  3. 3.
    Seki S, Hayamizu K, Tzuzuki S, Fujii K, Umebayashi Y, Mitsugi T, Kobayashi T, Ohno Y, Kabayasi T, Mita Y, Miyashiro H, Ishigoru SI (2009) Relationship between center atom species (N,P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Phys Chem Chem Phys 18:3509–3514CrossRefGoogle Scholar
  4. 4.
    Santos D, Santos M, Franceschi E, Dariva C, Barison A, Mattedi S (2016) Experimental density of ionic liquids and thermodynamic modeling with group contribution equation of state based on the lattice fluid theory. J Chem Eng Data 61:348–353CrossRefGoogle Scholar
  5. 5.
    Fredlake CP, Crostwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964CrossRefGoogle Scholar
  6. 6.
    Yim T, Choi CY, Mun J, Oh SM, Kim YG (2009) Synthesis and properties of acyclic ammonium-based ionic liquids with allyl substituents as electrolytes. Molecules 14:1840–1851CrossRefGoogle Scholar
  7. 7.
    Wu TY, Su SG, Wang HP, Lin YC, Gung ST, Lin MW, Sun IW (2011) Electrochemical studies and self diffusion coefficients in cyclic ammonium based ionic liquids with allyl substituents. Electrochim Acta 56:3209–3218CrossRefGoogle Scholar
  8. 8.
    Lagourette B, Boned C, Saint-Guirons H, Xans P, Zhou H (1992) Densimeter calibration method versus temperature and pressure. Meas Sci Technol 3:699–703CrossRefGoogle Scholar
  9. 9.
    Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide. J Chem Eng Data 57:1072–1077CrossRefGoogle Scholar
  10. 10.
    Costa AJL, Esperanza JMSS, Marrucho IM, Rebelo LPN (2011) Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. J Chem Eng Data 56:3433–3441CrossRefGoogle Scholar
  11. 11.
    Wang J, Li Z, Li C, Wang Z (2010) Density prediction of ionic liquids at different temperatures and pressures using a group contribution equation of state based on electrolyte perturbation theory. Ind Eng Chem Res 49(9):4420–4425CrossRefGoogle Scholar
  12. 12.
    Dzueba SV, Batsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophoshates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166CrossRefGoogle Scholar
  13. 13.
    Tokuda H, Hayamizu K, Ishii K, Bin Hasan SMA, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. I. Variation of anionic species. J Phys Chem B 108:16593–16600CrossRefGoogle Scholar
  14. 14.
    Mandai T, Imanari M, Nishikawa K (2011) Correlation between hydrocarbon flexibility and physicochemical properties for cyclohexyl-imidazolium based ionic liquids studied by 1H and 13C NMR. Chem Phys Lett 507:100–104CrossRefGoogle Scholar
  15. 15.
    Shirota H, Matsozaki H, Ramati S, Wishart JF (2015) Effects of aromaticity in cations and their functional groups on the low-frequency spectra and physical properties of ionic liquids. Phys Chem B 119(29):9173–9187CrossRefGoogle Scholar
  16. 16.
    Mandai T, Matsumara A, Imanari M, Nishikawa K (2012) Effects of cyclic-hydrocarbon substituents and linker length on physicochemical properties and reorientational dynamics of imidazolium-based ionic liquids. J Phys Chem B 116:2090–2095CrossRefGoogle Scholar
  17. 17.
    Mandai T, Masu H, Imanari M, Nishikawa K (2012) Comparison between cycloalkyl- and n-alkyl-substituted imidazolium-based ionic liquids in physicochemical properties and reorientational dynamics. J Phys Chem B 116:2059–2064CrossRefGoogle Scholar
  18. 18.
    Shirota H, Castner EW (2005) Why are viscosities lower for ionic liquids with −CH2Si(CH3)3 vs −CH2C(CH3)3 substitutions on the imidazolium cations? J Phys Chem B 109:21576–21585CrossRefGoogle Scholar
  19. 19.
    Tao R, Tamas G, Xue L, Simon SL, Quitevis EL (2014) Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J Chem Eng Data 59:2717–2724CrossRefGoogle Scholar
  20. 20.
    Singh RP, Manandhar S, Sheeve JM (2002) New dense fluoroalkyl-substituted imidazolium ionic liquids. Tetrahedron Lett 43:9497–9499CrossRefGoogle Scholar
  21. 21.
    Bittner B, Wrobel RJ, Milchert EJ (2012) Physical properties of pyridinium ionic liquids. J Chem Thermodyn 55:159–165CrossRefGoogle Scholar
  22. 22.
    Yunus NM, Mutalib Am Man Z, Bustam MA, Murugesan T (2010) Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Thermodyn 42:491–495CrossRefGoogle Scholar
  23. 23.
    Appetecchi GB, Montanino M, Zane D, Carewski M, Alessandri F, Passerini S (2009) Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochim Acta 54:1325–1332CrossRefGoogle Scholar
  24. 24.
    Yim T, Lee H, Kim H, Mun J, Kim S, Oh S, Kim Y (2007) Synthesis and properties of pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide ionic liquids with allyl substituents. Bull Kor Chem Soc 28:1567–1572CrossRefGoogle Scholar
  25. 25.
    Bhatterjee A, Carvalho PJ, Coutinho JAP (2014) The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib 375:80–88CrossRefGoogle Scholar
  26. 26.
    Le MLP, Alloin F, Strobel P, Lepretre JC, Cointeaux L, del Valle C (2012) Electrolyte based on fluorinated cyclic quaternary ammonium ionic liquids. Ionics Kiel 18:817–827CrossRefGoogle Scholar
  27. 27.
    Galinski M, Stepniak I (2009) Morpholium-based ionic mixtures as electrolytes in electrochemical double layer capacitors. J Appl Electrochem 39:1949–1953CrossRefGoogle Scholar
  28. 28.
    Zhou BZ, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12:2196–2212CrossRefGoogle Scholar
  29. 29.
    Pinto RR, Mattedi S, Aznai M (2015) Synthesis and physical properties of three protic ionic liquids with the ethylammonium cation. Chem Eng Trans 43:1165–1170Google Scholar
  30. 30.
    Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99(7):2224–2235CrossRefGoogle Scholar
  31. 31.
    Patel NK, Joshipura MH (2013) Generalized PSRK model for prediction of liquid density of ionic liquids. Procedia Eng 51:386–394CrossRefGoogle Scholar
  32. 32.
    Montalbán MG, Collado-González M, DíazBanos FG, Villora G (2017) Predicting density and refractive index of ionic liquids. INTECH 15:339–368Google Scholar
  33. 33.
    Montalban MG, Bolívar CL, Diaz Banos FG, Víllora G (2015) Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J Chem Eng Data 60(7):1986–1996CrossRefGoogle Scholar
  34. 34.
    Kato R, Gmehling J (2005) Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. Fluid Phase Equilib 231(1):38–43CrossRefGoogle Scholar
  35. 35.
    Mahboub MS, Farrokhpour H (2016) Molecular thermodynamic modeling of ionic liquids using the perturbation-based linear Yukawa isotherm regularity. J Phys Condens Matter 28(23):235101CrossRefGoogle Scholar
  36. 36.
    Mahboub MS, Farrokhpour H, Parsafar GA (2016) Linear Yukawa isotherm regularity for dense fluids derived based on the perturbation theory. Fluid Phase Equilib 409:105–112CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland

Section editors and affiliations

  • Qing Zhou
  • Xingmei Lu
    • 1
  • Xiaoyan Ji
    • 2
  1. 1.Beijing Key Laboratory of Ionic Liquids Clean ProcessInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.Division of Energy ScienceLuleå University of TechnologyLuleåSweden