Skip to main content

Density of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 287 Accesses

Introduction

The experimentally measured densities of ionic liquids are important, since they can be used to develop equations of state, which describe non-ideal behavior of ionic liquids. The density and from it derived volumetric parameters of ionic liquids are required for developing new industrial processes [1]. Density is decreasing with increasing temperature due to increasing kinetic energy, which in turn increases the volume of ions. After linear fitting the parameters a and b for the temperature dependence of density are determined from

$$ \rho =b- aT $$
(1)

in which ρ denotes density and T temperature in Kelvin. In this work the method on how to determine the density of ionic liquids is reported. The main emphasis is put on comparison of the density of ionic liquids based on their structure. Some regularities have been observed in the density of ionic liquids depending on the type [2] and size of the ions [3, 4] and molecular weight of anions [5] and different functional...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sas D, Ivanis OG, Kijevcanin GR, Gonzales ML, Dominguez B, Radovic A (2018) Densities and derived volumetric properties of ionic liquids with [Nf2] and [NTf2] anions at high pressures. J Chem Eng Data 63:954–964

    Article  CAS  Google Scholar 

  2. Hudleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and composition of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  Google Scholar 

  3. Seki S, Hayamizu K, Tzuzuki S, Fujii K, Umebayashi Y, Mitsugi T, Kobayashi T, Ohno Y, Kabayasi T, Mita Y, Miyashiro H, Ishigoru SI (2009) Relationship between center atom species (N,P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Phys Chem Chem Phys 18:3509–3514

    Article  Google Scholar 

  4. Santos D, Santos M, Franceschi E, Dariva C, Barison A, Mattedi S (2016) Experimental density of ionic liquids and thermodynamic modeling with group contribution equation of state based on the lattice fluid theory. J Chem Eng Data 61:348–353

    Article  CAS  Google Scholar 

  5. Fredlake CP, Crostwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964

    Article  CAS  Google Scholar 

  6. Yim T, Choi CY, Mun J, Oh SM, Kim YG (2009) Synthesis and properties of acyclic ammonium-based ionic liquids with allyl substituents as electrolytes. Molecules 14:1840–1851

    Article  CAS  Google Scholar 

  7. Wu TY, Su SG, Wang HP, Lin YC, Gung ST, Lin MW, Sun IW (2011) Electrochemical studies and self diffusion coefficients in cyclic ammonium based ionic liquids with allyl substituents. Electrochim Acta 56:3209–3218

    Article  CAS  Google Scholar 

  8. Lagourette B, Boned C, Saint-Guirons H, Xans P, Zhou H (1992) Densimeter calibration method versus temperature and pressure. Meas Sci Technol 3:699–703

    Article  Google Scholar 

  9. Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide. J Chem Eng Data 57:1072–1077

    Article  CAS  Google Scholar 

  10. Costa AJL, Esperanza JMSS, Marrucho IM, Rebelo LPN (2011) Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. J Chem Eng Data 56:3433–3441

    Article  CAS  Google Scholar 

  11. Wang J, Li Z, Li C, Wang Z (2010) Density prediction of ionic liquids at different temperatures and pressures using a group contribution equation of state based on electrolyte perturbation theory. Ind Eng Chem Res 49(9):4420–4425

    Article  CAS  Google Scholar 

  12. Dzueba SV, Batsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophoshates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166

    Article  Google Scholar 

  13. Tokuda H, Hayamizu K, Ishii K, Bin Hasan SMA, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. I. Variation of anionic species. J Phys Chem B 108:16593–16600

    Article  CAS  Google Scholar 

  14. Mandai T, Imanari M, Nishikawa K (2011) Correlation between hydrocarbon flexibility and physicochemical properties for cyclohexyl-imidazolium based ionic liquids studied by 1H and 13C NMR. Chem Phys Lett 507:100–104

    Article  CAS  Google Scholar 

  15. Shirota H, Matsozaki H, Ramati S, Wishart JF (2015) Effects of aromaticity in cations and their functional groups on the low-frequency spectra and physical properties of ionic liquids. Phys Chem B 119(29):9173–9187

    Article  CAS  Google Scholar 

  16. Mandai T, Matsumara A, Imanari M, Nishikawa K (2012) Effects of cyclic-hydrocarbon substituents and linker length on physicochemical properties and reorientational dynamics of imidazolium-based ionic liquids. J Phys Chem B 116:2090–2095

    Article  CAS  Google Scholar 

  17. Mandai T, Masu H, Imanari M, Nishikawa K (2012) Comparison between cycloalkyl- and n-alkyl-substituted imidazolium-based ionic liquids in physicochemical properties and reorientational dynamics. J Phys Chem B 116:2059–2064

    Article  CAS  Google Scholar 

  18. Shirota H, Castner EW (2005) Why are viscosities lower for ionic liquids with −CH2Si(CH3)3 vs −CH2C(CH3)3 substitutions on the imidazolium cations? J Phys Chem B 109:21576–21585

    Article  CAS  Google Scholar 

  19. Tao R, Tamas G, Xue L, Simon SL, Quitevis EL (2014) Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J Chem Eng Data 59:2717–2724

    Article  CAS  Google Scholar 

  20. Singh RP, Manandhar S, Sheeve JM (2002) New dense fluoroalkyl-substituted imidazolium ionic liquids. Tetrahedron Lett 43:9497–9499

    Article  CAS  Google Scholar 

  21. Bittner B, Wrobel RJ, Milchert EJ (2012) Physical properties of pyridinium ionic liquids. J Chem Thermodyn 55:159–165

    Article  CAS  Google Scholar 

  22. Yunus NM, Mutalib Am Man Z, Bustam MA, Murugesan T (2010) Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Thermodyn 42:491–495

    Article  CAS  Google Scholar 

  23. Appetecchi GB, Montanino M, Zane D, Carewski M, Alessandri F, Passerini S (2009) Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochim Acta 54:1325–1332

    Article  CAS  Google Scholar 

  24. Yim T, Lee H, Kim H, Mun J, Kim S, Oh S, Kim Y (2007) Synthesis and properties of pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide ionic liquids with allyl substituents. Bull Kor Chem Soc 28:1567–1572

    Article  CAS  Google Scholar 

  25. Bhatterjee A, Carvalho PJ, Coutinho JAP (2014) The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib 375:80–88

    Article  Google Scholar 

  26. Le MLP, Alloin F, Strobel P, Lepretre JC, Cointeaux L, del Valle C (2012) Electrolyte based on fluorinated cyclic quaternary ammonium ionic liquids. Ionics Kiel 18:817–827

    Article  CAS  Google Scholar 

  27. Galinski M, Stepniak I (2009) Morpholium-based ionic mixtures as electrolytes in electrochemical double layer capacitors. J Appl Electrochem 39:1949–1953

    Article  CAS  Google Scholar 

  28. Zhou BZ, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12:2196–2212

    Article  CAS  Google Scholar 

  29. Pinto RR, Mattedi S, Aznai M (2015) Synthesis and physical properties of three protic ionic liquids with the ethylammonium cation. Chem Eng Trans 43:1165–1170

    Google Scholar 

  30. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99(7):2224–2235

    Article  CAS  Google Scholar 

  31. Patel NK, Joshipura MH (2013) Generalized PSRK model for prediction of liquid density of ionic liquids. Procedia Eng 51:386–394

    Article  CAS  Google Scholar 

  32. Montalbán MG, Collado-González M, DíazBanos FG, Villora G (2017) Predicting density and refractive index of ionic liquids. INTECH 15:339–368

    Google Scholar 

  33. Montalban MG, Bolívar CL, Diaz Banos FG, Víllora G (2015) Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J Chem Eng Data 60(7):1986–1996

    Article  CAS  Google Scholar 

  34. Kato R, Gmehling J (2005) Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. Fluid Phase Equilib 231(1):38–43

    Article  CAS  Google Scholar 

  35. Mahboub MS, Farrokhpour H (2016) Molecular thermodynamic modeling of ionic liquids using the perturbation-based linear Yukawa isotherm regularity. J Phys Condens Matter 28(23):235101

    Article  Google Scholar 

  36. Mahboub MS, Farrokhpour H, Parsafar GA (2016) Linear Yukawa isotherm regularity for dense fluids derived based on the perturbation theory. Fluid Phase Equilib 409:105–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Päivi Mäki-Arvela .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mäki-Arvela, P. (2020). Density of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_106-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_106-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics