Micro-/Nano-texturing by Ultrasonic-Assisted Grinding

  • Masayoshi Mizutani
  • Shaolin Xu
  • Keita Shimada
  • Tsunemoto Kuriyagawa
Living reference work entry
Part of the Micro/Nano Technologies book series (MNT, volume 1)


In this chapter, a novel ultrasonic-assisted micro-/nano-texturing method was proposed and developed. A new 3D ultrasonic vibration spindle was developed for carrying out the proposed processes. The texturing mechanisms were analyzed by mathematically calculating the cutting loci and establishing the surface generation modeling processes. Finally, the tool design principles were proposed and experimentally verified. The experimental results and theoretical analysis proved that the proposed method can rapidly and precisely fabricate tailored surface textures at micrometer and nanometer scales.


Micro-/nano-texturing Ultrasonic assisted grinding Texured surface Functional surface 


  1. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228CrossRefGoogle Scholar
  2. Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools. Taylor and Francis, UKGoogle Scholar
  3. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172CrossRefGoogle Scholar
  4. Brinksmeier E, Gläbe R, Schӧnemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7CrossRefGoogle Scholar
  5. Cheng J, Liu C, Shang S, Liu D, Perrie W (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46:88–102CrossRefGoogle Scholar
  6. Denkena B, Kästner J, Wang B (2010) Advanced microstructures and its production through cutting and grinding. CIRP Ann Manuf Technol 59(1):67–72CrossRefGoogle Scholar
  7. Dubey AK, Yadava V (2008) Laser beam machining – a review. Int J Mach Tools Manuf 48(6):609–628CrossRefGoogle Scholar
  8. Ehmann KF, Hong MS (1994) A generalized model of the surface generation process in metal cutting. CIRP Ann Manuf Technol 43(1):483–486CrossRefGoogle Scholar
  9. Hansen HN, Hocken RJ, Tosello G (2011) Replication of micro and nano surface geometries. CIRP Ann Manuf Technol 60(2):695–714CrossRefGoogle Scholar
  10. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300CrossRefGoogle Scholar
  11. Kim DS, Chang IC, Kim SW (2002) Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces. Precis Eng 26(2):168–174CrossRefGoogle Scholar
  12. Kurosawa M, Kodaira O, Tsuchitoi Y, Higuchi T (1998) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1188–1195CrossRefGoogle Scholar
  13. Lee WB, Cheung CF (2001) A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int J Mech Sci 43(4):961–991CrossRefMATHGoogle Scholar
  14. Lin SC, Chang MF (1998) A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int J Mach Tools Manuf 38(7):763–782CrossRefGoogle Scholar
  15. Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33(10):1706–1716CrossRefGoogle Scholar
  16. Lyshevski SE (2002) MEMS and NEMS: systems, devices, and structures. Taylor & Francis, UKGoogle Scholar
  17. Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49(2):473–488CrossRefGoogle Scholar
  18. Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann Manuf Technol 44(1):31–34CrossRefGoogle Scholar
  19. Rozzi JC, Pfefferkorn FE, Incropera FP, Shin YC (2000a) Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories. Int J Heat Mass Transf 43(3):1409–1424CrossRefMATHGoogle Scholar
  20. Rozzi JC, Pfefferkorn FE, Shin YC (2000b) Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: II. Assessment of parametric effects. Int J Heat Mass Transf 43(8):1425–1437CrossRefMATHGoogle Scholar
  21. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43(1):35–38CrossRefGoogle Scholar
  22. Shimada K (2012) Study on vibration grinding. Doctoral thesisGoogle Scholar
  23. Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann Manuf Technol 53(1):57–60CrossRefGoogle Scholar
  24. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6(1):11–16CrossRefGoogle Scholar
  25. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE (1997) Supramolecular materials: self-organized nanostructures. Science 276(5311):384–389CrossRefGoogle Scholar
  26. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255CrossRefGoogle Scholar
  27. Xing D, Zhang J, Shen X, Zhao Y, Wang T (2013) Tribological properties of ultrasonic vibration assisted milling aluminium alloy surfaces. Procedia CIRP 6:539–544CrossRefGoogle Scholar
  28. Xu S, Nishikawa C, Shimada K, Mizutani M, Kuriyagawa T (2013) Surface textures fabrication on zirconia ceramics by 3D ultrasonic vibration assisted slant feed grinding. Adv Mater Res 797:326–331CrossRefGoogle Scholar
  29. Xu S, Shimada K, Mizutani M, Kuriyagawa T (2014) Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. Int J Mach Tools Manuf 86:12–17Google Scholar
  30. Xu S, Shimada K, Mizutani M, Kuriyagawa T (2016) Analysis of machinable structures and their wettability of rotary ultrasonic texturing method. Chinese J Mechanical Eng 29 (6):1187–1192Google Scholar
  31. Xu S, Shimada K, Mizutani M, Kuriyagawa T (2017) Development of a novel 2D rotary ultrasonic texturing technique for fabricating tailored structures. Int J Adv Manuf Tech 89 (1–4):1161–1172Google Scholar
  32. Xu S, Shimada K, Mizutani M, Kuriyagawa T (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng 12(1):33–45Google Scholar
  33. Yan J, Oowada T, Zhou T, Kuriyagawa T (2009) Precision machining of microstructures on electroless-plated NiP surface for molding glass components. J Mater Process Technol 209(10):4802–4808CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masayoshi Mizutani
    • 1
    • 3
  • Shaolin Xu
    • 2
  • Keita Shimada
    • 1
  • Tsunemoto Kuriyagawa
    • 1
  1. 1.Tohoku UniversitySendaiJapan
  2. 2.Southern University of Science and TechnologyShenzhenChina
  3. 3.Department of Mechanical Systems Engineering, Graduate School of EngineeringTohoku UniversitySendai-cityJapan

Personalised recommendations