Advertisement

Micro Cylindrical Turning of Calcium Fluoride

  • Yasuhiro Kakinuma
  • Yuta Mizumoto
Living reference work entry

Later version available View entry history

Part of the Micro/Nano Technologies book series (MNT, volume 1)

Abstract

Single-crystalline CaF2 is one of the key materials for next-generation micro-optical devices, such as optical microcavities, because of its excellent performance in a wide range of wavelength regimes. Nevertheless, typical chemical processes such as etching are not applicable to the fabrication process in this case, because the material has crystal anisotropy and a complex shape is required. The most feasible and promising approach is ultra-precision cutting. Here, the machinability of CaF2 in micro cylindrical turning and its influence on surface integrity are described based on detailed experimental results. It is clarified that the machined surface integrity varies in dependency with cutting crystalline planes and directions, and the surface morphology, surface roughness, and critical depth of cut change according to its crystalline structure.

Keywords

Single-crystalline CaF2 Ultra-precision cutting Cylindrical turning Crystal anisotoropy Subsurface damage 

References

  1. Azami S, Kudo H, Mizumoto Y, Tanabe T, Yan J, Kakinuma Y (2015) Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride. Precis Eng 40:172–181CrossRefGoogle Scholar
  2. Bezuidenhout DF (1997) Handbook of optical constants of solids. Academic Press, LondonGoogle Scholar
  3. Bifano GT, Dow TA, Scattergood RO (1989) Ductile-regime grinding of brittle materials: experimental results and the development of a model. 32nd Annual Technical Symposium, International Society for Optics and Photonics, pp 108–115Google Scholar
  4. Blackley WS, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng 13(2):95–103CrossRefGoogle Scholar
  5. Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957CrossRefGoogle Scholar
  6. Chen L, Hu LC, Xiao C, Qi YQ, Yu BJ, Qian LM (2017a) Effect of crystallographic orientation on mechanical removal of CaF2. Wear 376:409–416Google Scholar
  7. Chen X, Xu J, Fang H, Tian R (2017b) Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting. Int J Adv Manuf Tech 89:219–225CrossRefGoogle Scholar
  8. Fang FZ, Chen LJ (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann-Manuf Techn 49(1):17–20Google Scholar
  9. Furukawa Y, Moronuki N (1988) Effect of material properties on ultra precise cutting processes. CIRP Ann-Manuf Techn 37(1):113–116CrossRefGoogle Scholar
  10. Goel S, Luo XC, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRefGoogle Scholar
  11. Grudinin IS, Matsko AB, Savchenkov AA, Strekalov D, Ilchenko VS, Maleki L (2006) Ultra high Q crystalline microcavities. Opt Commun 265(1):33–38CrossRefGoogle Scholar
  12. Gu W, Yao Z, Li H (2011) Investigation of grinding modes in horizontal surface grinding of optical glass BK7. J Mater Process Tech 211(10):1629–1636CrossRefGoogle Scholar
  13. Inasaki I (2009) Machining system. Tokyo, Yokendo. (in Japanese)Google Scholar
  14. Janicki MJ, Drzymala J, Kowalczuk PB (2016) Structure and surface energy of both fluorite halves after cleaving along selected crystallographic planes. Physicochem Probl Mi 52(1):451–458Google Scholar
  15. Jawahir IS, Brinksmeier E, M'Saoubi R, Aspinwall DK, Outeiro JC, Meyer D et al (2011) Surface integrity in material removal processes: recent advances. CIRP Ann-Manuf Techn 60(2):603–626CrossRefGoogle Scholar
  16. Liberman V, Bloomstein TM, Rothschild M, Sedlacek JHC, Uttaro RS, Bates AK et al (1999) Materials issues for optical components and photomasks in 157 nm lithography. J Vac Sci Technol B: Microelectron Nanometer Struct 17(6):3273CrossRefGoogle Scholar
  17. Liu K, Zuo DW, Li XP, Rahman M (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vac Sci Technol B 27(3):1361–1366CrossRefGoogle Scholar
  18. Lucca DA, Brinksmeier E, Goch G (1998) Progress in assessing surface and subsurface integrity. CIRP Ann-Manuf Techn 47(2):669–693CrossRefGoogle Scholar
  19. Marsh ER, John BP, Couey JA, Wang J, Grejda RD, Vallance RR (2005) Predicting surface figure in diamond turned calcium fluoride using in-process force measurement. J Vac Sci Technol B 23(1):84–89CrossRefGoogle Scholar
  20. Matsubara T, Yamamoto H, Mizumoto H (1984) Study on regenerative chatter vibration with dynamic cutting force. Japan journal of. Precis Eng 50(7):11–15. (in Japanese)Google Scholar
  21. Mittemeijer EJ (2010) Fundamentals of materials science: the microstructure-property relationship using metals as model systems. Springer, BerlinGoogle Scholar
  22. Mizumoto Y, Kakinuma Y (2018) Revisit of the anisotropic deformation behavior of single-crystal CaF2 in orthogonal cutting. Precis Eng (accepted for publication).Google Scholar
  23. Nakasuji T, Kodera S, Hara S, Matsunaga H, Ikawa N, Shimada S (1990) Diamond turning of brittle materials for optical components. CIRP Ann-Manuf Techn 39(1):89–92CrossRefGoogle Scholar
  24. Namba Y, Ohnishi N, Yoshida S, Harada K, Yoshida K, Matsuo T (2004) Ultra-precision float polishing of calcium fluoride single crystals for deep ultra violet applications. CIRP Ann-Manuf Techn 53(1):459–462CrossRefGoogle Scholar
  25. Namba Y, Yoshida T, Yoshida S, Yoshida K (2005) Surfaces of calcium fluoride single crystals ground with an ultra-precision surface grinder. CIRP Ann-Manuf Techn 54(1):503–506CrossRefGoogle Scholar
  26. Nath C, Rahman M, Neo KS (2009) A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide. J Mater Process Tech 209(17):5830–5836CrossRefGoogle Scholar
  27. Panin V, Kolubaev A, Tarasov S, Popov V (2001) Subsurface layer formation during sliding friction. Wear 249(10-11):860–867CrossRefGoogle Scholar
  28. Reichling M, Wilson RM, Bennewitz R, Williams RT, Gogoll S, Stenzel E et al (1996) Surface colloid evolution during low-energy electron irradiation of CaF2(111). Surf Sci 366(3):531–544Google Scholar
  29. Schick M, Dabringhaus H, Wandelt K (2004) Macrosteps on CaF2(111). J Phys Condens Matter 16(6):33–37Google Scholar
  30. Sumiya H, Harano K, Murakami H (2012) Application of Nano-polycrystalline diamond o cutting tools. SEI TECHNICAL REVIEW 75:18–23Google Scholar
  31. Technical Document of OKEN Co. Ltd.Google Scholar
  32. Wang H, Riemer O, Rickens K, Brinksmeier E (2016) On the mechanism of asymmetric ductile–brittle transition in microcutting of (111) CaF2 single crystals. Scr Mater 114:21–26Google Scholar
  33. Wermelinger T, Borgia C, Solenthaler C, Spolenak R (2007) 3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals. Acta Mater 55(14):4657–4665CrossRefGoogle Scholar
  34. Yan J, Syoji K, K T (2000) Ductile-brittle transition at large negative tool rake angles. Japan Journal of Precision Engineering 66(1):1130–1134CrossRefGoogle Scholar
  35. Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Tech 121(2–3):363–372CrossRefGoogle Scholar
  36. Yan J, Syoji K, Tamaki J (2004a) Crystallographic effects in micro/nanomachining of single-crystal calcium fluoride. J Vac Sci Technol B: Microelectron Nanometer Struct 22(1):46–51CrossRefGoogle Scholar
  37. Yan J, Tamaki J, Syoji K, Kuriyagawa T (2004b) Single-point diamond turning of CaF2 for nanometric surface. Int J Adv Manuf Tech 24(9–10):640–646Google Scholar
  38. Yan J, Asami T, Kuriyagawa T (2008) Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy. Precis Eng 32(3):186–195CrossRefGoogle Scholar
  39. Yan J, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386CrossRefGoogle Scholar
  40. Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann-Manuf Techn 61(1):131–134CrossRefGoogle Scholar
  41. Yoshizawa T (2009) Handbook of optical metrology: principles and applications. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of System Design EngineeringKeio UniversityYokohamaJapan

Personalised recommendations