Skip to main content

Online Test Microstructures of the Thermophysical Properties of MEMS Conducting Films

  • Reference work entry
  • First Online:
  • 3005 Accesses

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Thermophysical properties of MEMS materials, such as thermal conductivity, thermal diffusivity, and coefficient of thermal expansion (CTE), are one of the most important properties in MEMS technology. Steady-state thermal response and transient-state thermal response of MEMS devices depend on the thermal conductivity and the thermal diffusivity of device materials. Thermally driven microstructures, on the other hand, exploit the thermal expansion effect for their operation. It is necessary to characterize the thermophysical properties of MEMS materials for the design of MEMS devices.

This chapter will present online test microstructures and measurement methods for the thermophysical properties of MEMS conducting beams. The background of the work is reviewed in section “Introduction.” In section “Online Test Microstructure of Thermal Conductivity,” test microstructures for thermal conductivity based on steady-state thermal analysis are developed. Section “Online Test Microstructure of Thermal Conductivity and Thermal Diffusivity” is dedicated to discussing transient-state thermal analysis and proposing a test microstructure for both thermal conductivity and thermal diffusivity. In sections “Online Test Microstructure of the Coefficient of Thermal Expansion by Rotating Technique” and “Online Test Microstructure of the Coefficient of Thermal Expansion by a Pull-In Approach,” the coefficient of thermal expansion is extracted by micro-rotating structures and double-clamped beams, respectively. The former takes advantage of thermal actuation, while the latter makes use of the electrostatic pull-in approach. All the test microstructures proposed in sections. “Online Test Microstructure of Thermal Conductivity,” “Online Test Microstructure of Thermal Conductivity and Thermal Diffusivity” and “Online Test Microstructure of the Coefficient of Thermal Expansion by Rotating Technique” are stimulated electrically and measured electrically. They can find applications in MEMS fabrication process line to provide direct quality control and obtain the data needed by MEMS designers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arx M-V, Paul O, Baltes H (1995) Determination of the heat capacity of CMOS layers for optimal CMOS sensor design. Sensors Actuators A Phys 47(1–3):428–431

    Article  Google Scholar 

  • Arx M-Von, Paul O, Baltes H (1997) Thermoelectric test structures to measure the heat capacity of CMOS layer sandwiches. In: Proceedings of TRANSDUERS’97, pp 619–22

    Google Scholar 

  • Arx M-V, Paul O, Baltes H (1998) Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Trans Semicond Manuf 11(2):217–224

    Article  Google Scholar 

  • Arx M-v, Paul O, Baltes H (2000) Process dependent thin film thermal conductivities for thermal CMOS MEMS. J Microelectromech Syst 9(1):136–145

    Article  Google Scholar 

  • Brand O, Fedder GK (2005) CMOS mems. Wiley, Weinheim

    Book  Google Scholar 

  • Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum 61(2):802–808

    Article  Google Scholar 

  • Chae JH, Lee JY, Kang SW (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sensors Actuators A Phys 75(3):222–229

    Article  Google Scholar 

  • Cheng C, Tsai M, Fang W (2015) Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers. J Micromech Microeng 25(2):025014.1–025014.14

    Article  Google Scholar 

  • deCoster J, Lofrano M, Jansen R, Rottenberg X, Severi S, Borremans J, VanderPlas G, Donnay S, Tilmans HAC (2011) A novel test method for simulations measurement of thermal conductivity, CTE, residual stress and Young's modulus of suspended thin film using a laser Doppler vibrometer. In: Proceedings of TRANSDUCERS'11, pp 1701–1704

    Google Scholar 

  • Fang W, Tsai HC, Lo CY (1999) Determining thermal expansion coefficients of thin films using micromachined cantilevers. Sensors Actuators A Phys 77(1):21–27

    Article  Google Scholar 

  • Gabbay LD (1998) Computer aided macromodeling for MEMS. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Geisberger AA, Sarkar N, Skidmore GD (2003) Electrothermal properties and modeling of polysilicon microthermal actuators. J Microelectromech Syst 12(4):513–523

    Article  Google Scholar 

  • Hafizovic S, Paul O (2002) Temperature-dependent thermal conductivities of CMOS layers by micromachined thermal van der Pauw test structures. Sensors Actuators A Phys 97–98:246–252

    Article  Google Scholar 

  • Holman JP (1997) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70

    Article  Google Scholar 

  • Huang Q-A, Xu G, Qi L, Li W (2006) A simple method for measuring the thermal diffusivity of surface micromachined polysilicon thin films. J Micromech Microeng 16(5):981–985

    Article  Google Scholar 

  • Irace A, Sarro PM (1999) Measurement of thermal conductivity and diffusivity of single and multiplayer membranes. Sensors Actuators A Phys 76(1–3):323–328

    Article  Google Scholar 

  • Jain A, Goodson KE (2008) Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J Heat Transf 130(10):102402.1–102402.7

    Article  Google Scholar 

  • Jansen E, Obermeier E (1996) Thermal conductivity measurements on thin films based on micromechanical devices. J Microelectromech Syst 6(1):118–121

    Google Scholar 

  • Leon I, Amador R, Kohlhof K (2004) Evaluation of MUMPS polysilicon structures for thermal flow sensors. Microelectron Reliab 44(4):651–655

    Article  Google Scholar 

  • Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sensors Actuators A Phys 55(1):35–41

    Article  Google Scholar 

  • Liu C (2006) Foundations of MEMS. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Liu Z, Huang Q-A, Li W (2004) Analysis of optimized micro-rotating-structure for MEMS. In: Proceedings of the 7th international conference on solid-state and integrated circuits Technology, pp 1747–1750

    Google Scholar 

  • Liu Z, Huang Q-A, Li W (2006) A new micro-rotating structure. J Phys Conf Ser 34(34):552–557

    Article  Google Scholar 

  • Liu H, Li W, Yuan F, Jiang M, Huang QA (2012a) Micro-rotating structures for determining thermal expansion coefficients of polysilicon thin films. In: Proceedings of 2012 I.E. Sensors, pp 1596–1599

    Google Scholar 

  • Liu H, Zhou Z, Li W, Huang Q-A (2012b) An online test structure for the thermal expansion coefficient of surface micromachined polysilicon beams by a pull-in approach. J Micromech Microeng 22(5): 055017.1–055017.8

    Article  Google Scholar 

  • Liu H, Li W, Zhou Z, Huang Q-A (2013) In situ test structures for the thermal expansion coefficient and residual stress of polysilicon thin films. J Micromech Microeng 23(7):075019.1–075019.9

    Google Scholar 

  • Liu H, Li W, Zhou Z, Huang Q-A (2014) In-situ determination of the coefficient of thermal expansion of polysilicon thin films using micro-rotating structures. Thin Solid Films 552(3):184–191

    Article  Google Scholar 

  • Mag-isa AE, Kim S-M, Kim J-H, Lee H-J, Oh C-S (2013) Out-of-plane CTE measurement method for freestanding thin films. Exp Mech 53(6):1017–1024

    Article  Google Scholar 

  • Mastrangelo CH, Muller RS (1988) Thermal diffusivity of heavily doped low pressure chemical vapor deposited polycrystalline silicon films. Sensors Mater 3:133–142

    Google Scholar 

  • McConnell AD, Uma S, Goodson KE (2001) Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 10(3): 360–369

    Article  Google Scholar 

  • Morikawa J, Hashmoto T (1998) Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis. Japan. J Appl Phys 37:1484–1487

    Article  Google Scholar 

  • Murarka SP, Retajczyk TF (1983) Effect of phosphorus doping on stress in silicon and polycrystalline silicon. J Appl Phys 54(4): 2069–2072

    Article  Google Scholar 

  • Nie M, Huang Q-A, Li W, Rong H (2005) An in-situ technique for measuring Young’s modulus and residual stress of each layer for multi-layer film. In: Proceedings of TRANSDUCERS '05, pp 836–839

    Google Scholar 

  • Nie M, Huang Q-A, Li W (2009) Pull-in characterization of doubly-clamped composite beams. Sensors Actuators A Phys 151(2):118–126

    Article  Google Scholar 

  • Ogando K, laForgia N, Zárate JJ, Pastoriza H (2012) Design and characterization of a fully compliant out-of-plane thermal actuator. Sensors Actuators A Phys 183:95–100

    Article  Google Scholar 

  • Osterberg PM, Senturia SD (1997) M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  • Pan CH (2002) A simple method for determining linear thermal expansion coefficients of thin films. J Micromech Microeng 12:548–555

    Article  Google Scholar 

  • Paul O, Ruther P, Plattner L, Baltes H (2000) A thermal van der Pauw test structure. IEEE Trans Semicond Manufact 13(2):159–166

    Article  Google Scholar 

  • Pocratsky RM, deBoer MP (2014) Determination of thin film coefficient of thermal expansion and residual strain from freestanding fixed–fixed beams. J Vac Sci Technol B 32(6):062001.1–062001.6

    Article  Google Scholar 

  • Retajczyk TF, Sinha AK (1980) Elastic stiffness and thermal expansion coefficient of BN films. Appl Phys Lett 36(2):161–163

    Article  Google Scholar 

  • Roncaglia A, Cozzani E, Mancarella F, Passini M, Cardinali GC, Severi M (2007) Influence of air heat exchange upon on-chip measurement of thermal conductivity using MEMS test structures. In: Proceedings of TRANSDUCERS’07, pp 615–618

    Google Scholar 

  • Rong H, Huang Q-A, Nie M, Li W (2004) An analytical model for pull-in voltage of clamped-clamped mutilayer beams. Sensors Actuators A Phys 116(1):15–21

    Article  Google Scholar 

  • Schafer H, Graeger V, Kobs R (1989) Temperature independent pressure sensors using polycrystalline silicon strain gauges. Sensors Actuators 17(3–4):521–527

    Article  Google Scholar 

  • Senturia SD (2001) Microsystem design. Kluwer, New York

    Google Scholar 

  • Stojanovic N, Yun J, Washington EBK, Berg JM, Holtz MW, Temkin H (2007) Thin-film thermal conductivity measurement using microelectrothermal test structures and finite-element-model-based data analysis. J Microelectromech Syst 16(5):1269–1275

    Article  Google Scholar 

  • Tada H, Kumpel AE, Lathrop RE, Slanina JB, Nieva P, Zavracky P, Miaoulis IN, Wong PY (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87(9):4189–4193

    Article  Google Scholar 

  • Tai YC, Mastrengelo CH, Muller RS (1988) Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films. J Appl Phys 63(5):1442–1447

    Article  Google Scholar 

  • Volkein F, Baltes H (1992) A microstructure for measurement of thermal conductivity of polysilicon thin films. J Microelectromech Syst 1(4):193–196

    Article  Google Scholar 

  • Wang ZD, Zhao XX, Jiang SQ, Lu JJ (2005) Determining thermal expansion coefficient of stressed thin films at low temperature. Polym Test 24: 839–843

    Article  Google Scholar 

  • Wang Z, Fiorini P, van Hoof C (2009) CMOS-compatible surface-micromachined test structure for determination of thermal conductivity of thin film materials based on Seebeck effect. In: Proceedings of MEMS 2009, pp 623–626

    Google Scholar 

  • Xu G, Huang Q-A (2006) An online test microstructure for thermal conductivity of surface-micromachined polysilicon thin films. IEEE Sensors J 6(2):428–433

    Article  Google Scholar 

  • Xu G, Huang Q-A, Jiang Y (2002) A new test structure for measuring thermal conductivity of polysilicon thin films. In: Proceedings of SPIE (SPIE, shanghai 2002) vol 4928, pp 267-271

    Google Scholar 

  • Zhang X, Zhang T, Zohar Y (1998) Measurements of residual stresses in thin films using micro-rotating structures. Thin Solid Films 335(1–2):97–105

    Article  Google Scholar 

  • Ziang X, Grigoropoulos CP (1995) Thermal conductivity and diffusivity of free standing silicon nitride thin films. Rev Sci Instrum 66(2):1115–1120

    Article  Google Scholar 

  • Zou Q, Li Z, Liu L (1995) New methods for measuring mechanical properties of thin films in micromaching: beam pull-in voltage (VPI) method and long beam deflection (LBD) method. Sensors Actuators A Phys 48(2):137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Yun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, HY., Zhou, ZF., Huang, QA. (2018). Online Test Microstructures of the Thermophysical Properties of MEMS Conducting Films. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_6

Download citation

Publish with us

Policies and ethics