Skip to main content

MEMS Piezoelectric Vibration Energy Harvesters

  • Reference work entry
  • First Online:

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Rapid advances in microelectronic devices (such as embedded sensors, medical implants, wireless communication nodes, and so on) have stimulated the development in ambient energy harvesting over the last decade. In this chapter, the fundamental theory and the typical microfabrication of MEMS piezoelectric vibration energy harvester were introduced. Firstly, the application background of the vibration energy harvester was analyzed. Then the working principle of the piezoelectric vibration energy harvester was introduced. After that, the theoretical model was deduced through Hamilton’s principle and Euler-Bernoulli beam theory. The optimization of the piezoelectric vibration energy harvester was performed, and the optimization results show that the electromechanical conversion efficiency is not more than 50% and the PVEH with low damping ratio does not always have high power output, which challenges previous literature suggestion that lower damping ratio tends to higher power output. Finally, the typical microfabrication of MEMS based piezoelectric energy harvesters was described and the challenges of the MEMS PVEH were illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. In: Solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011 16th international: IEEE, pp 1649–1652

    Google Scholar 

  • Aktakka EE, Peterson RL, Najafi K (2013) Wafer-level integration of high-quality bulk piezoelectric ceramics on silicon. IEEE Trans Electron Devices 60:2022–2030

    Article  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1

    Article  Google Scholar 

  • Barth S, Bartzsch H, Glöß D, Frach P, Modes T, Zywitzki O, Suchaneck G, Gerlach G (2016) Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications. Microsyst Technol 22:1–5

    Article  Google Scholar 

  • Bertacchini A, Scorcioni S, Dondi D, Larcher L, Pavan P, Todaro M T, Campa A, Caretto G, Petroni S, Passaseo A (2011) AlN-based MEMS devices for vibrational energy harvesting applications. In: 2011 proceedings of the European solid-state device research conference (ESSDERC): IEEE, pp 119–122

    Google Scholar 

  • Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process. Sensors Actuators A Phys 188:489–494

    Article  Google Scholar 

  • Deng L, Wen Z, Zhao X, Yuan C, Luo G, Mo J (2014) High voltage output MEMS vibration energy harvester in d31 mode with PZT thin film. J Microelectromech Syst 23:855–861

    Article  Google Scholar 

  • Dubois-Ferrière H, Fabre L, Meier R, Metrailler P (2006) TinyNode: a comprehensive platform for wireless sensor network applications. In: Proceedings of the 5th international conference on Information processing in sensor networks: ACM, pp 358–365

    Google Scholar 

  • Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:94005

    Article  Google Scholar 

  • Elfrink R, Renaud M, Kamel TM, De Nooijer C, Jambunathan M, Goedbloed M, Hohlfeld D, Matova S, Pop V, Caballero L (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20:104001

    Article  Google Scholar 

  • Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers R, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. In: Electron devices meeting (IEDM), 2011 I.E. international: IEEE), pp 25–29

    Google Scholar 

  • Erturk A, Inman DJ (2011) Appendix A: piezoelectric constitutive equations. In: Piezoelectric energy harvesting, Wiley, New York, pp 343–348

    Google Scholar 

  • Fan F, Tian Z, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  Google Scholar 

  • Fang H, Liu J, Xu Z, Dong L, Wang L, Chen D, Cai B, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  • Gupta MK, Kim S, Kumar B (2016) Flexible high-performance lead-free Na0. 47K0. 47Li0. 06NbO3 microcube-structure-based piezoelectric energy harvester. Acs Appl Mater Inter 8:1766–1773

    Article  Google Scholar 

  • Hande A, Polk T, Walker W, Bhatia D (2007) Indoor solar energy harvesting for sensor network router nodes. Microprocess Microsyst 31:420–432

    Article  Google Scholar 

  • Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:23001

    Article  Google Scholar 

  • He X, Gao J (2013) Wind energy harvesting based on flow-induced-vibration and impact. Microelectron Eng 111:82–86

    Article  Google Scholar 

  • He X, Shang Z, Cheng Y, Zhu Y (2013) A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging. J Micromech Microeng 23:125009

    Article  Google Scholar 

  • Isarakorn D, Briand D, Janphuang P, Sambri A, Gariglio S, Triscone JM, Guy F, Reiner JW, Ahn CH, de Rooij NF (2011) The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film. Smart Mater Struct 20:25015

    Article  Google Scholar 

  • Jackson N, O Keeffe R, Waldron F, O Neill M, Mathewson A (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23:75014

    Article  Google Scholar 

  • Jambunathan M, Elfrink R, Vullers R, van Schaijk R, Dekkers M, Broekmaat J (2012) Pulsed laser deposited-PZT based MEMS energy harvesting devices. In: Proceedings of ISAF-ECAPD-PFM 2012: IEEE. pp 1–4

    Google Scholar 

  • Janphuang P, Lockhart R, Briand D, de Rooij NF (2012) Wafer level fabrication of vibrational energy harvesters using bulk PZT sheets. Procedia Engineering 47:1041–1044

    Article  Google Scholar 

  • Janphuang P, Lockhart R, Uffer N, Briand D, de Rooij NF (2014) Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level. Sensors Actuators A Phys 210:1–9

    Article  Google Scholar 

  • Kim S, Park H, Kim S, Wikle HC, Park J, Kim D (2013) Comparison of MEMS PZT cantilevers based on and modes for vibration energy harvesting. J Microelectromech Syst 22:26–33

    Google Scholar 

  • Knight RR, Mo C, Clark WW (2011) MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam. J Electroceram 26:14–22

    Article  Google Scholar 

  • Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2007) Degradation in the ferroelectric and piezoelectric properties of Pb (Zr, Ti) O3 thin films derived from a MEMS microfabrication process. J Micromech Microeng 17:1238

    Article  Google Scholar 

  • Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2008) Fabrication of piezoelectric microcantilevers using LaNiO3 buffered Pb (Zr, Ti) O3 thin film. J Micromech Microeng 18:35007

    Article  Google Scholar 

  • Leadenham S, Erturk A (2015) Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater Struct 24:55021

    Article  Google Scholar 

  • Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) {1 0 0}-textured, piezoelectric Pb (Zr x, Ti 1− x) O 3 thin films for MEMS: integration, deposition and properties. Sensors Actuators A Phys 105:162–170

    Article  Google Scholar 

  • Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK (2009) Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19:65014

    Article  Google Scholar 

  • Lee G, Shin D, Kwon Y, Jeong S, Koh J (2016) Optimized piezoelectric and structural properties of (Bi, Na) TiO 3–(Bi, K) TiO 3 ceramics for energy harvester applications. Ceram Int 42(13):14355–14363

    Google Scholar 

  • Lei A, Xu R, Thyssen A, Stoot AC, Christiansen TL, Hansen K, Lou-Moeller R, Thomsen EV, Birkelund K (2011) MEMS-based thick film PZT vibrational energy harvester. In: Micro electro mechanical systems (MEMS), 2011 I.E. 24th international conference on IEEE, pp 125–128

    Google Scholar 

  • Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20:1131–1142

    Article  Google Scholar 

  • Meitzler AH, Tiersten HF, Warner AW, Berlincourt D, Couqin GA, Welsh III FS (1988) IEEE standard on piezoelectricity. IEEE, New York

    Google Scholar 

  • Nguyen, H H, Oguchi H, Kuwano H (2016). Combinatorial approach to MgHf co-doped AlN thin films for Vibrational Energy Harvesters. Journal of Physics Conference Series 773:012075

    Google Scholar 

  • Park JC, Park JY, Lee Y (2010) Modeling and characterization of piezoelectric-mode MEMS energy harvester. J Microelectromech Syst 19:1215–1222

    Article  Google Scholar 

  • Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Kluwer Academic Publishers, Springer, Dordrecht, Netherlands

    Google Scholar 

  • Renno JM, Daqaq MF, Inman DJ (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320:386–405

    Article  Google Scholar 

  • Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energ Convers Manage 52:500–504

    Article  Google Scholar 

  • Shang Z, Li D, Wen Z, Zhao X (2013) Flow-induced-vibration MEMS energy harvesting unit based on AlN film in silicon. Opt Precis Eng 12:11

    Google Scholar 

  • Shen D, Park J, Ajitsaria J, Choe S, Wikle HC III, Kim D (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:55017

    Article  Google Scholar 

  • Shen D, Park J, Noh JH, Choe S, Kim S, Wikle HC, Kim D (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensors Actuators A Phys 154:103–108

    Article  Google Scholar 

  • Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEJ T Electr Electr 6:101–111

    Article  Google Scholar 

  • Tang G, Liu JQ, Liu HS, Li YG, Yang CS, He DN, DzungDao V, Tanaka K, Sugiyama S (2011) Piezoelectric MEMS generator based on the bulk PZT/silicon wafer bonding technique. Phys Status Solidi (a) 208:2913–2919

    Article  Google Scholar 

  • Tang G, Liu J, Yang B, Luo J, Liu H, Li Y, Yang C, He D, Dao VD, Tanaka K (2012) Fabrication and analysis of high-performance piezoelectric MEMS generators. J Micromech Microeng 22:65017

    Article  Google Scholar 

  • Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91:93508

    Article  Google Scholar 

  • van Minh L, Sano T, Fujii T, Kuwano H (2016) Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3 films on stainless steel substrates. Journal of Physics Conference Series 773:012003

    Google Scholar 

  • Wang Q, Du X, Xu B, Eric Cross L (1999) Electromechanical coupling and output efficiency of piezoelectric bending actuators. IEEE Trans Ultrason Ferroelectr Freq Control 46:638–646

    Article  Google Scholar 

  • Won SS, Lee J, Venugopal V, Kim D, Lee J, Kim IW, Kingon AI, Kim S (2016) Lead-free Mn-doped (K0. 5, Na0. 5) NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl Phys Lett 108:232908

    Article  Google Scholar 

  • Wu WJ, Lee BS (2012) Piezoelectric MEMS power generators for vibration energy harvesting. In: Lallart M (ed) Small-scale energy harvesting. InTech, pp 156–157

    Google Scholar 

  • Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen EV, Hansen O (2012) Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters. J Micromech Microeng 22:94007

    Article  Google Scholar 

  • Zhang F, Wang L (2002). Modern piezoelectricity. Science Press, Beijing.

    Google Scholar 

  • Zhang J, Cao Z, Kuwano H (2011) Fabrication of low-residual-stress aln thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50:9N–18N

    Article  Google Scholar 

  • Zhao X, Shang Z, Luo G, Deng L (2015) A vibration energy harvester using AlN piezoelectric cantilever array. Microelectron Eng 142:47–51

    Article  Google Scholar 

  • Zhengguo S, Dongling L, Zhiyu W, Xingqiang Z (2013) The fabrication of vibration energy harvester arrays based on AlN piezoelectric film. J Semicond 34:114013

    Article  Google Scholar 

  • Zorlu Ö, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors J 11:481–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deng, L., Wen, Z., Zhao, X. (2018). MEMS Piezoelectric Vibration Energy Harvesters. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_40

Download citation

Publish with us

Policies and ethics