Skip to main content

Appliances for Cooking, Heating, and Other Energy Services

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 99 Accesses

Abstract

Appliances employ energy to provide services such as cooking, space heating, water heating, and lighting. Available energy is delivered either by a carrier such as electricity or by combustion of a wide range of fuels ranging from natural gas to liquid fuels to solid coal, wood, or waste. When combustion occurs indoors without direct venting, occupants are exposed to effluents, as they have been throughout human history. Cooktops and cooking stoves have a multitude of forms depending on the fuel and the type of food, and are the most likely appliances to release effluents to occupied space. Devices that provide space heat and water heat are often enclosed, vented, and isolated from the living space, although fugitive emissions can still occur. Lighting has mostly transitioned to electricity although some regions use liquid fuels with high emissions. The nature of combustion alters the mass, particle size distributions, and chemical composition of emissions, with gaseous and liquid fuels yielding lower emissions. Strategies for separating humans from combustion emissions include improving combustion and ventilation, processing fuel, using cleaner fuels, and altering the ways in which energy services are provided. Appliances form part of a complex system that includes humans, infrastructure, and expectations in addition to fuels and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AEPC (2016) Nepal Interim Benchmark for solid biomass Cookstoves. AEPC, Kathmandu

    Google Scholar 

  • Akowuah JO, Kemausuor F, Mitchual SJ (2012) Physico-chemical characteristics and market potential of sawdust charcoal briquette. Int J Energy Environ Eng 3:1–6

    Article  CAS  Google Scholar 

  • ANSI (2016) ANSI standard Z21.1: household cooking gas appliances. ANSI, Washington, DC

    Google Scholar 

  • ASHRAE (2019) ANSI/ASHRAE standard 62.2-2019: ventilation and acceptable indoor air quality in residential buildings. ASHRAE, Atlanta

    Google Scholar 

  • Aste N, Adhikari RS, Del Pero C (2009) Estimation of NOx emissions associated with the natural gas consumption for residential heating in Italy. In: 2009 International conference on clean electrical power. IEEE, pp 202–206

    Google Scholar 

  • Bailis R, Wang Y, Drigo R et al (2017) Getting the numbers right: revisiting woodfuel sustainability in the developing world. Environ Res Lett 12:115002. https://doi.org/10.1088/1748-9326/aa83ed

    Article  CAS  Google Scholar 

  • Balachandra P (2011) Dynamics of rural energy access in India: an assessment. Energy 36:5556–5567. https://doi.org/10.1016/j.energy.2011.07.017

    Article  Google Scholar 

  • Bates E (2008) Chimney stoves and smoke hood. Appropr Technol 35:50

    Google Scholar 

  • Bi X, Simoneit BRT, Sheng G, Fu J (2008) Characterization of molecular markers in smoke from residential coal combustion in China. Fuel 87:112–119. https://doi.org/10.1016/j.fuel.2007.03.047

    Article  CAS  Google Scholar 

  • Bond T, Venkataraman C, Masera O (2004) Global atmospheric impacts of residential fuels. Energy Sustain Dev VIII:20–32

    Article  Google Scholar 

  • Brand-Correa LI, Martin-Ortega J, Steinberger JK (2018) Human scale energy services: untangling a “golden thread”. Energy Res Soc Sci 38:178–187

    Article  Google Scholar 

  • Brunner T, Obernberger I, Scharler R (2009) Primary measures for low-emission residential wood combustion–comparison of old with optimised modern systems. In: Proc. of the 17th European biomass conference, p 2009

    Google Scholar 

  • Bryden M, Still D, Scott P et al (2005) Design principles for wood burning cook stoves. Aprovecho Research Center, Cottage Grove

    Google Scholar 

  • Butcher SS, Ellenbecker MJ (1982) Particulate emission factors for small wood and coal stoves. J Air Pollut Control Assoc 32:380–384

    Article  CAS  Google Scholar 

  • Champion WM, Grieshop AP (2019) Pellet-fed gasifier stoves approach gas-stove like performance during in-home use in Rwanda. Environ Sci Technol 53:6570–6579. https://doi.org/10.1021/acs.est.9b00009

    Article  CAS  Google Scholar 

  • Chandrasekaran SR, Hopke PK, Rector L et al (2012) Chemical composition of wood chips and wood pellets. Energy Fuels 26:4932–4937

    Article  CAS  Google Scholar 

  • Chang M-CO, Chow JC, Watson JG et al (2004) Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J Air Waste Manag Assoc 54:1494–1505

    Article  CAS  Google Scholar 

  • Chen Y, Zhi G, Feng Y et al (2006) Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys Res Lett 33:L20815. https://doi.org/10.1029/2006GL026966

    Article  CAS  Google Scholar 

  • Clark S, Carter E, Shan M et al (2017) Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa751e

  • Dasch JM (1982) Particulate and gaseous emissions from wood-burning fireplaces. Environ Sci Technol 16:639–645

    Article  CAS  Google Scholar 

  • Eiseley LC (1954) Man the fire-maker. Sci Am 191:52–57

    Article  Google Scholar 

  • Energy Information Administration (2015) Residential energy consumption survey. https://www.eia.gov/consumption/residential/. Accessed 30 Mar 2022

  • Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. I. Fundamentals. Energy Fuels 1:123–137

    Article  CAS  Google Scholar 

  • Fedak KM, Good N, Dahlke J et al (2018) Chemical composition and emissions factors for cookstove startup (ignition) materials. Environ Sci Technol 52:9505–9513

    Article  CAS  Google Scholar 

  • Fell MJ (2017) Energy services: a conceptual review. Energy Res Soc Sci 27:129–140. https://doi.org/10.1016/j.erss.2017.02.010

    Article  Google Scholar 

  • Fine PM, Cass GR, Simoneit BRT (2001) Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ Sci Technol 35:2665–2675

    Article  CAS  Google Scholar 

  • Fine PM, Cass GR, Simoneit BRT (2002) Organic compounds in biomass smoke from residential wood combustion: emissions characterization at a continental scale. J Geophys Res 107:8349. https://doi.org/10.1029/2001JD000661

    Article  CAS  Google Scholar 

  • Flagan RC, Friedlander SK (1978) Particle formation in pulverized coal combustion – a review. In: Shaw DT (ed) Recent developments in aerosol science. Wiley, New York, pp 25–59

    Google Scholar 

  • Fleming LT, Lin P, Laskin A et al (2018) Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmos Chem Phys 18:2461–2480. https://doi.org/10.5194/acp-18-2461-2018

    Article  CAS  Google Scholar 

  • Fouquet R (2008) Heat, power and light: revolutions in energy services. Edward Elgar Publishing, Cheltenham

    Book  Google Scholar 

  • Franklin B (1786) Description of a new stove for burning of pitcoal, and consuming all its smoke, by Dr. Franklin. Trans Am Philos Soc 2:57–74

    Article  Google Scholar 

  • Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  CAS  Google Scholar 

  • Gaydon AG, Moore NPW, Simonson JR (1955) Chemical and spectroscopic studies of blue flames in the auto-ignition of methane. Proc R Soc A Math Phys Sci 230:1–19

    CAS  Google Scholar 

  • Geels FW (2005) Processes and patterns in transitions and system innovations: refining the co-evolutionary multi-level perspective. Technol Forecast Soc Change 72:681–696. https://doi.org/10.1016/j.techfore.2004.08.014

    Article  Google Scholar 

  • Gould CF, Urpelainen J (2018) LPG as a clean cooking fuel: adoption, use, and impact in rural India. Energy Policy 122:395–408

    Article  Google Scholar 

  • Han Y, Chen Y, Feng Y et al (2021) Fuel aromaticity promotes low-temperature nucleation processes of elemental carbon from biomass and coal combustion. Environ Sci Technol 55:2532–2540. https://doi.org/10.1021/acs.est.0c06694

    Article  CAS  Google Scholar 

  • Haynes BS, Wagner HG (1981) Soot formation. Prog Energy Combust Sci 7:229–273

    Article  CAS  Google Scholar 

  • Hiemstra-van der Horst G, Hovorka AJ (2008) Reassessing the “energy ladder”: household energy use in Maun, Botswana. Energy Policy. https://doi.org/10.1016/j.enpol.2008.05.006

  • Hosier RH, Dowd J (1987) Household fuel choice in Zimbabwe: an empirical test of the energy ladder hypothesis. Resour Energy 9:347–361

    Article  Google Scholar 

  • Houck JE, Tiegs PE (1998) Residential wood combustion technology review. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • ISO (2018a) Clean cookstoves and clean cooking solutions – harmonized laboratory test protocols – part 1: standard test sequence for emissions and performance, safety and durability. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2018b) ISO/TR 19867-3:2018: clean cookstoves and clean cooking solutions – harmonized laboratory test protocols – part 3: voluntary performance targets for cookstoves based on laboratory testing. International Organization for Standardization, Geneva

    Google Scholar 

  • Jayarathne T, Stockwell CE, Bhave PV et al (2018) Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos Chem Phys 18:2259–2286

    Article  CAS  Google Scholar 

  • Jetter JJ, Kariher P (2009) Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy 33:294–305. https://doi.org/10.1016/j.biombioe.2008.05.014

    Article  CAS  Google Scholar 

  • Johansson LS, Tullin C, Leckner B, Sjövall P (2003) Particle emissions from biomass combustion in small combustors. Biomass Bioenergy 25:435–446. https://doi.org/10.1016/S0961-9534(03)00036-9

    Article  CAS  Google Scholar 

  • Johansson LS, Leckner B, Gustavsson L et al (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38:4183–4195. https://doi.org/10.1016/j.atmosenv.2004.04.020

    Article  CAS  Google Scholar 

  • Johnson M, Edwards R, Frenk CA, Masera O (2008) In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos Environ 42:1206–1222

    Article  CAS  Google Scholar 

  • Kinyanjui M, Childers L (1983) How to make the Kenyan Ceramic Jiko. Energy/Development International, Paris

    Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (1999) Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environ Sci Technol 33:3516–3523

    Article  CAS  Google Scholar 

  • Koirala DP, Acharya B (2022) Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal. Energy Policy 162:112795. https://doi.org/10.1016/j.enpol.2022.112795

    Article  Google Scholar 

  • Lam NL, Chen YJ, Weyant C et al (2012) Household light makes global heat: high black carbon emissions from kerosene wick lamps. Environ Sci Technol 46:13531–13538. https://doi.org/10.1021/es302697h

    Article  CAS  Google Scholar 

  • Leach G (1992) The energy transition. Energy Policy 20:116–123

    Article  Google Scholar 

  • Lebel ED, Finnegan CJ, Ouyang Z, Jackson RB (2022) Methane and NOx emissions from natural gas stoves, cooktops, and ovens in residential homes. Environ Sci Technol 56:2529–2539. https://doi.org/10.1021/acs.est.1c04707

    Article  CAS  Google Scholar 

  • Li X, Duan L, Wang S et al (2007) Emission characteristics of particulate matter from rural household biofuel combustion in China. Energy Fuels 21:845–851

    Article  CAS  Google Scholar 

  • Linak WP, Wendt JOL (1998) Comparison of the particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. Combust Sci Technol 134:291–314

    CAS  Google Scholar 

  • Lindgren SA (2020) Clean cooking for all? A critical review of behavior, stakeholder engagement, and adoption for the global diffusion of improved cookstoves. Energy Res Soc Sci 68:101539. https://doi.org/10.1016/j.erss.2020.101539

    Article  Google Scholar 

  • Lipsky EM, Robinson AM (2006) Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environ Sci Technol 40:155–162

    Article  CAS  Google Scholar 

  • Liu C, Zhu B, Ni J, Wei C (2021) Residential coal-switch policy in China: development, achievement, and challenge. Energy Policy 151:112165. https://doi.org/10.1016/j.enpol.2021.112165

    Article  Google Scholar 

  • Lunden MM, Delp WW, Singer BC (2015) Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods. Indoor Air 25:45–58. https://doi.org/10.1111/ina.12118

    Article  CAS  Google Scholar 

  • MacCarty N, Still D, Ogle D (2010) Fuel use and emissions performance of fifty cooking stoves in the laboratory andrelated benchmarks of performance. Energy Sustain Dev 14:161–171

    Article  Google Scholar 

  • Macumber DW, Jaasma DR (1982) Efficiency and emissions of a hand-fired residential coalstove. In: Cooper JA, Malek D (eds) Residential solid fuels. Oregon Graduate Center, Portland, pp 313–332

    Google Scholar 

  • Masekameni DM, Brouwer D, Makonese T et al (2018) Size distribution of ultrafine particles generated from residential fixed-bed coal combustion in a typical brazier. Aerosol Air Qual Res 18:2618–2632

    Article  CAS  Google Scholar 

  • Masera OR, Saatkamp BD, Kammen DM (2000) From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev 28:2083–2103

    Article  Google Scholar 

  • May AA, Levin EJT, Hennigan CJ et al (2013) Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. J Geophys Res Atmos 118:11327–11338. https://doi.org/10.1002/jgrd.50828

    Article  CAS  Google Scholar 

  • McDonald R (2009) Evaluation of gas, oil and wood pellet fueled residential heating system emissions characteristics. Brookhaven National Lab (BNL), Upton

    Book  Google Scholar 

  • McDonald JD, Zielinska B, Fujita EM et al (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34:2080–2091

    Article  CAS  Google Scholar 

  • Mena F, Bond TC, Riemer N (2017) Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion. Atmos Chem Phys 17:9399–9415

    Article  CAS  Google Scholar 

  • Merrin Z, Francisco PW (2019) Unburned methane emissions from residential natural gas appliances. Environ Sci Technol 53:5473–5482. https://doi.org/10.1021/acs.est.8b05323

    Article  CAS  Google Scholar 

  • Michelsen HA, Colket MB, Bengtsson P-E et al (2020) A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano 14:12470–12490. https://doi.org/10.1021/acsnano.0c06226

    Article  CAS  Google Scholar 

  • Minutolo P, D’Anna A, Commodo M et al (2008) Emission of ultrafine particles from natural gas domestic burners. Environ Eng Sci 25:1357–1364

    Article  CAS  Google Scholar 

  • Mobarak AM, Dwivedi P, Bailis R et al (2012) Low demand for nontraditional cookstove technologies. Proc Natl Acad Sci U S A 109:10815–10820. https://doi.org/10.1073/pnas.1115571109

    Article  Google Scholar 

  • Mudarri D, Fisk WJ (2007) Public health and economic impact of dampness and mold. Indoor Air 17:226–235

    Article  CAS  Google Scholar 

  • Mukunda HS, Dasappa S, Paul PJ et al (2010) Gasifier stoves – science, technology and field outreach. Curr Sci 98:627–638

    CAS  Google Scholar 

  • Mwampamba TH, Ghilardi A, Sander K, Chaix KJ (2013a) Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy Sustain Dev 17:75–85. https://doi.org/10.1016/j.esd.2013.01.001

    Article  Google Scholar 

  • Mwampamba TH, Owen M, Pigaht M (2013b) Opportunities, challenges and way forward for the charcoal briquette industry in sub-Saharan Africa. Energy Sustain Dev 17:158–170

    Article  Google Scholar 

  • Nadel S (2019) Electrification in the transportation, buildings, and industrial sectors: a review of opportunities, barriers, and policies. Curr Sustain Renew Energy Rep 6:158–168

    CAS  Google Scholar 

  • Ogulei D, Hopke PK, Wallace LA (2006) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16:204–215

    Article  CAS  Google Scholar 

  • Pundle A, Sullivan B, Means P et al (2019) Predicting and analyzing the performance of biomass-burning natural draft rocket cookstoves using computational fluid dynamics. Biomass Bioenergy 131:105402

    Article  CAS  Google Scholar 

  • Pyne SJ (1995) World fire: the culture of fire on Earth. Holt, New York

    Google Scholar 

  • Ramanathan T, Ramanathan N, Mohanty J et al (2017) Wireless sensors linked to climate financing for globally affordable clean cooking. Nat Clim Change 7:44. https://doi.org/10.1038/nclimate3141

    Article  Google Scholar 

  • Rao ND (2012) Kerosene subsidies in India: when energy policy fails as social policy. Energy Sustain Dev 16:35–43

    Article  Google Scholar 

  • Rapp VH, Pastor-Perez A, Singer BC, Wray CP (2013) Predicting backdrafting and spillage for natural-draft gas combustion appliances: a validation of VENT-II. HVAC&R Res 19:295–306

    CAS  Google Scholar 

  • Reed TB, Larson R (1997) A wood-gas stove for developing countries. In: Developments in thermochemical biomass conversion. Springer, Dordrecht, pp 985–993

    Chapter  Google Scholar 

  • Roden CA, Bond TC, Conway S et al (2009) Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos Environ 43:1170–1181

    Article  CAS  Google Scholar 

  • Rolland N (2004) Was the emergence of home bases and domestic fire a punctuated event? A review of the Middle Pleistocene record in Eurasia. Asian Perspect 43:248–280

    Article  Google Scholar 

  • Rosin PO (1939) The aerodynamics of domestic open fires. Institute of fuel, London

    Google Scholar 

  • Ruiz-Mercado I, Masera O (2015) Patterns of stove use in the context of fuel-device stacking: rationale and implications. EcoHealth 12:42–56. https://doi.org/10.1007/s10393-015-1009-4

    Article  Google Scholar 

  • Saito K, Williams FA, Gordon AS (1987) A study of the two-color soot zone for small hydrocarbon diffusion flames. Combust Sci Technol 51:285–305. https://doi.org/10.1080/00102208708960326

    Article  CAS  Google Scholar 

  • Sanchis E, Ferrer M, Calvet S et al (2014) Gaseous and particulate emission profiles during controlled rice straw burning. Atmos Environ 98:25–31

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35:1716–1728

    Article  CAS  Google Scholar 

  • Shan M, Carter E, Baumgartner J et al (2017) A user-centered, iterative engineering approach for advanced biomass cookstove design and development. Environ Res Lett 12:95009

    Article  CAS  Google Scholar 

  • Shankar AV, Quinn AK, Dickinson KL et al (2020) Everybody stacks: lessons from household energy case studies to inform design principles for clean energy transitions. Energy Policy 141:111468

    Article  Google Scholar 

  • Shen G, Yang Y, Wang W et al (2010) Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ Sci Technol 44:7157–7162

    Article  CAS  Google Scholar 

  • Shen G, Tao S, Wei S et al (2013) Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ Sci Technol 47:2998–3005

    Article  CAS  Google Scholar 

  • Shen G, Gaddam CK, Ebersviller SM et al (2017) A laboratory comparison of emission factors, number size distributions, and morphology of ultrafine particles from 11 different household cookstove-fuel systems. Environ Sci Technol 51:6522–6532. https://doi.org/10.1021/acs.est.6b05928

    Article  CAS  Google Scholar 

  • Shen G, Hays MD, Smith KR et al (2018) Evaluating the performance of household liquefied petroleum gas cookstoves. Environ Sci Technol 52:904–915. https://doi.org/10.1021/acs.est.7b05155

    Article  CAS  Google Scholar 

  • Shen H, Luo Z, Xiong R et al (2021) A critical review of pollutant emission factors from fuel combustion in home stoves. Environ Int 157:106841. https://doi.org/10.1016/j.envint.2021.106841

    Article  CAS  Google Scholar 

  • Shove EA (2003) Comfort, cleanliness and convenience: the social organization of normality. Berg, Oxford, UK

    Google Scholar 

  • Simoneit BRT, Rogge WF, Mazurek MA et al (1993) Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ Sci Technol 27:2533–2541

    Article  CAS  Google Scholar 

  • Simoneit BRT, Schauer JJ, Nolte CG et al (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    Article  CAS  Google Scholar 

  • Smith KR, Apte MG, Ma Y et al (1994) Air pollution and the energy ladder in Asian cities. Energy 9:587–600

    Article  Google Scholar 

  • Smith KR, Uma R, Kishore VVN et al (2000a) Greenhouse gases from small-scale combustion devices in developing countries: household stoves in India. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  • Smith KR, Uma R, Kishore VVN et al (2000b) Greenhouse implications of household stoves: an analysis for India. Annu Rev Energy Environ 25:741–763

    Article  Google Scholar 

  • Soile I, Mu X (2015) Who benefit most from fuel subsidies? Evidence from Nigeria. Energy Policy 87:314–324. https://doi.org/10.1016/j.enpol.2015.09.018

    Article  Google Scholar 

  • Soriano JB, Kendrick PJ, Paulson KR et al (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 8:585–596

    Article  Google Scholar 

  • Standards Administration of China (2017) Clean biomass cookstove. Report No. GB/T 35564-2017.

    Google Scholar 

  • Still DK, Bentson S, Murray N et al (2018) Laboratory experiments regarding the use of filtration and retained heat to reduce particulate matter emissions from biomass cooking. Energy Sustain Dev 42:129–135

    Article  Google Scholar 

  • Thoday K, Benjamin P, Gan M, Puzzolo E (2018) The Mega Conversion Program from kerosene to LPG in Indonesia: lessons learned and recommendations for future clean cooking energy expansion. Energy Sustain Dev 46:71–81

    Article  Google Scholar 

  • Thomas C, William C, Peel JL et al (2022) Design and rationale of the HAPIN study: a multicountry randomized controlled trial to assess the effect of liquefied petroleum gas stove and continuous fuel distribution. Environ Health Perspect 128:47008. https://doi.org/10.1289/EHP6407

    Article  Google Scholar 

  • Thompson RJ, Li J, Weyant CL et al (2019) Field emission measurements of solid fuel stoves in Yunnan, China demonstrate dominant causes of uncertainty in household emission inventories. Environ Sci Technol. https://doi.org/10.1021/acs.est.8b07040

  • Tiwari M, Sahu SK, Bhangare RC et al (2014) Particle size distributions of ultrafine combustion aerosols generated from household fuels. Atmos Pollut Res 5:145–150. https://doi.org/10.5094/APR.2014.018

    Article  CAS  Google Scholar 

  • Traynor GW, Apte MG, Sokol HA et al (1990) Selected organic pollutant emissions from unvented kerosene space heaters. Environ Sci Technol 24:1265–1270

    Article  CAS  Google Scholar 

  • Traynor GW, Apte MG, Chang G-M (1996) Pollutant emission factors from residential natural gas appliances: a literature review. Lawrence Berkeley National Laboratory Report LBL-38123.

    Google Scholar 

  • U.S. EPA (1996) Chapter 1.10. Residential wood stoves. In: Compilation of air pollutant emissions factors. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (1998a) Chapter 1.4. Natural gas combustion. In: Compilation of air pollutant emissions factors. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (1998b) Chapter 1.1. Bituminous and subbituminous coal combustion. In: Compilation of air pollutant emissions factors. U.S. EPA, Washington, DC

    Google Scholar 

  • Urban GL, Bryden KM, Ashlock DA (2002) Engineering optimization of an improved plancha stove. Energy Sustain Dev 6:9–19

    Article  Google Scholar 

  • Venkataraman C, Rao GUM (2001) Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion. Environ Sci Technol 35:2100–2107

    Article  CAS  Google Scholar 

  • Wathore R, Mortimer K, Grieshop AP (2017) In-use emissions and estimated impacts of traditional, natural-and forced-draft cookstoves in rural Malawi. Environ Sci Technol 51:1929–1938

    Article  CAS  Google Scholar 

  • Weimer S, Alfarra MR, Schreiber D et al (2008) Organic aerosol mass spectral signatures from wood-burning emissions: influence of burning conditions and wood type. J Geophys Res Atmos 113:10. https://doi.org/10.1029/2007jd009309

    Article  Google Scholar 

  • Westhoff B, German D (1995) Stove images: a documentation of improved and traditional stoves in Africa, Asia and Latin America. Commission of the European Communities, Brussels

    Google Scholar 

  • Weyant CL, Chen P, Vaidya A et al (2019) Emission measurements from traditional biomass cookstoves in South Asia and Tibet. Environ Sci Technol 53:3306–3314. https://doi.org/10.1021/acs.est.8b05199

    Article  CAS  Google Scholar 

  • Whittaker C, Shield I (2017) Factors affecting wood, energy grass and straw pellet durability – a review. Renew Sust Energ Rev 71:1–11

    Article  Google Scholar 

  • Winijkul E, Fierce L, Bond TC (2016) Emissions from residential combustion considering end-uses and spatial constraints: part I, methods and spatial distribution. Atmos Environ 125:126–139. https://doi.org/10.1016/j.atmosenv.2015.10.013

    Article  CAS  Google Scholar 

  • Wrangham R (2009) Catching fire: how cooking made us human. Basic Books, New York

    Google Scholar 

  • Xue J, Li Y, Peppers J et al (2018) Ultrafine particle emissions from natural gas, biogas, and biomethane combustion. Environ Sci Technol 52:13619–13628. https://doi.org/10.1021/acs.est.8b04170

    Article  CAS  Google Scholar 

  • Yun X, Shen G, Shen H et al (2020) Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Sci Adv 6:eaba7621

    Article  CAS  Google Scholar 

  • Zhang J, Smith KR, Uma R et al (1999) Carbon monoxide from cookstoves in developing countries: 1. Emission factors. Chemos Glob Change Sci 1:353–366

    Article  Google Scholar 

  • Zhang Y, Yuan Q, Huang D et al (2018) Direct observations of fine primary particles from residential coal burning: insights into their morphology, composition, and hygroscopicity. J Geophys Res Atmos 123:12–964

    Article  Google Scholar 

  • Zheng X, Wei C, Qin P et al (2014) Characteristics of residential energy consumption in China: findings from a household survey. Energy Policy 75:126–135

    Article  Google Scholar 

  • Zhi GR, Peng CH, Chen YJ et al (2009) Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate. Environ Sci Technol 43:5586–5591. https://doi.org/10.1021/es802955d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tami C. Bond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bond, T.C., Merrin, Z. (2022). Appliances for Cooking, Heating, and Other Energy Services. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics