Skip to main content

Semi-Volatile Organic Compounds (SVOCs)

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality
  • 145 Accesses

Abstract

In modern buildings, abundant synthetic materials and products are used to meet various demands of occupants. A vast of semi-volatile organic compounds (SVOCs) are added as additives or solvents to facilitate the production of, or enhance the performance of, these materials and products, leading to the ubiquity of SVOCs in indoor environments. SVOCs can be slowly emitted from these sources and then be partitioned among gas phase and various indoor surfaces. Due to their strong partitioning between air and surfaces, SVOCs have long indoor persistence (days to years, or even more). Human exposure to some SVOCs have been proved to be associated with diverse health risks, which have led to product reformulations in some cases. However, few knowledges about the indoor fate, human exposure, and the associated health risks are currently available for many other widely used SVOCs as well as the increasing number of emerging SVOCs. This chapter provides an overview on the usage, basic physicochemical properties, and adverse health effects of four classes of SVOCs that have been frequently/newly investigated in the past 20 years, including (1) phthalate esters (PAEs) and their alternatives, (2) brominated flame retardants (BFRs), (3) organophosphate flame retardants (OPFRs), and (4) per- and polyfluoroalkyl substances (PFAS). Overall, this chapter aims to emphasize the importance of investigating SVOC pollution in indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Afshari A, Gunnarsen L, Clausen PA, Hansen V (2004) Emission of phthalates from PVC and other materials. Indoor Air 14(2):120–128

    Article  CAS  Google Scholar 

  • Ait Bamai Y (2020) Semi-volatile organic compounds (SVOCs): phthalates and phosphorous frame retardants and health risks. In: Kishi R, Norbäck D, Araki A (eds) Indoor environmental quality and health risk toward healthier environment for all. Springer Singapore, Singapore, pp 159–178

    Chapter  Google Scholar 

  • Arvaniti OS, Stasinakis AS (2015) Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 524–525:81–92

    Article  CAS  Google Scholar 

  • Benning JL, Liu Z, Tiwari A, Little JC, Marr LC (2013) Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring. Environ Sci Technol 47(6):2696–2703

    Article  CAS  Google Scholar 

  • Blum A, Behl M, Birnbaum LS, Diamond ML, Phillips A, Singla V, Sipes NS, Stapleton HM, Venier M (2019) Organophosphate ester flame retardants: are they a regrettable substitution for polybrominated diphenyl ethers? Environ Sci Technol Lett 6(11):638–649

    Article  CAS  Google Scholar 

  • Bu Z, Zhang Y, Mmereki D, Yu W, Li B (2016) Indoor phthalate concentration in residential apartments in Chongqing, China: implications for preschool children’s exposure and risk assessment. Atmos Environ 127:34–45

    Article  CAS  Google Scholar 

  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manage 7(4):513–541

    Article  CAS  Google Scholar 

  • Cao J, Zhang X, Little JC, Zhang Y (2017) A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor Air 27(2):417–426

    Article  CAS  Google Scholar 

  • Chen Y, Liu Q, Ma J, Yang S, Wu Y, An Y (2020) A review on organophosphate flame retardants in indoor dust from China: implications for human exposure. Chemosphere 260:127633

    Article  CAS  Google Scholar 

  • Chupeau Z, Bonvallot N, Mercier F, Le Bot B, Chevrier C, Glorennec P (2020) Organophosphorus flame retardants: a global review of indoor contamination and human exposure in Europe and epidemiological evidence. Int J Environ Res Public Health 17(18):6713

    Article  CAS  Google Scholar 

  • Clausen PA, Hansen V, Gunnarsen L, Afshari A, Wolkoff P (2004) Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 38(9):2531–2537

    Article  CAS  Google Scholar 

  • CPSC (2010) Overview of dialkyl o-phthalates toxicity. https://www.cpsc.gov/s3fs-public/phthalover.pdf

  • De Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624

    Article  Google Scholar 

  • DeLuca NM, Angrish M, Wilkins A, Thayer K, Cohen Hubal EA (2021) Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review protocol. Environ Int 146:106308

    Article  CAS  Google Scholar 

  • Deng M, Liang X, Du B, Luo D, Chen H, Zhu C, Zeng L (2021) Beyond classic phthalates: occurrence of multiple emerging phthalate alternatives and their metabolites in human milk and implications for combined exposure in infants. Environ Sci Technol Lett 8(8):705–712

    Article  CAS  Google Scholar 

  • Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42(7):1371–1388

    Article  CAS  Google Scholar 

  • Du J, Li H, Xu S, Zhou Q, Jin M, Tang J (2019) A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res 26(22):22126–22136

    Article  CAS  Google Scholar 

  • Eichler CMA, Little JC (2020) A framework to model exposure to per- and polyfluoroalkyl substances in indoor environments. Environ Sci Process Impacts 22(3):500–511

    Article  CAS  Google Scholar 

  • Eichler CMA, Wu Y, Cao J, Shi S, Little JC (2018) Equilibrium relationship between SVOCs in PVC products and the air in contact with the product. Environ Sci Technol 52(5):2918–2925

    Article  CAS  Google Scholar 

  • Eichler CMA, Cohen Hubal EA, Little JC (2019) Assessing human exposure to chemicals in materials, products and articles: the international risk management landscape for phthalates. Environ Sci Technol 53(23):13583–13597

    Article  CAS  Google Scholar 

  • Eichler CMA, Hubal EAC, Xu Y, Cao J, Bi C, Weschler CJ, Salthammer T, Morrison GC, Koivisto AJ, Zhang Y, Mandin C, Wei W, Blondeau P, Poppendieck D, Liu X, Delmaar CJE, Fantke P, Jolliet O, Shin H-M, Diamond ML, Shiraiwa M, Zuend A, Hopke PK, von Goetz N, Kulmala M, Little JC (2021) Assessing human exposure to SVOCs in materials, products, and articles: a modular mechanistic framework. Environ Sci Technol 55(1):25–43

    Article  CAS  Google Scholar 

  • Ekelund M, Azhdar B, Gedde UW (2010) Evaporative loss kinetics of di(2-ethylhexyl)phthalate (DEHP) from pristine DEHP and plasticized PVC. Polym Degrad Stab 95(9):1789–1793

    Article  CAS  Google Scholar 

  • Fromme H, Dreyer A, Dietrich S, Fembacher L, Lahrz T, Völkel W (2015) Neutral polyfluorinated compounds in indoor air in Germany – the LUPE 4 study. Chemosphere 139:572–578

    Article  CAS  Google Scholar 

  • Fujii M, Shinohara N, Lim A, Otake T, Kumagai K, Yanagisawa Y (2003) A study on emission of phthalate esters from plastic materials using a passive flux sampler. Atmos Environ 37(39–40):5495–5504

    Article  CAS  Google Scholar 

  • Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z (2020) An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts 22(12):2345–2373

    Article  Google Scholar 

  • Harrad S, Ibarra C, Diamond M, Melymuk L, Robson M, Douwes J, Roosens L, Dirtu AC, Covaci A (2008) Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environ Int 34(2):232–238

    Article  CAS  Google Scholar 

  • Harrad S, de Wit CA, Abdallah MA-E, Bergh C, Björklund JA, Covaci A, Darnerud PO, de Boer J, Diamond M, Huber S, Leonards P, Mandalakis M, Östman C, Haug LS, Thomsen C, Webster TF (2010) Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol 44(9):3221–3231

    Article  CAS  Google Scholar 

  • Hsu NY, Liu YC, Lee CW, Lee CC, Su HJ (2017) Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper. Environ Res 152:1–6

    Article  CAS  Google Scholar 

  • Ivy DJ, Rigby M, Baasandorj M, Burkholder JB, Prinn RG (2012) Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmos Chem Phys 12(16):7635–7645

    Article  CAS  Google Scholar 

  • Jeon S, Kim KT, Choi K (2016) Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci Total Environ 547:441–446

    Article  CAS  Google Scholar 

  • Kashyap D, Agarwal T (2018) Concentration and factors affecting the distribution of phthalates in the air and dust: a global scenario. Sci Total Environ 635:817–827

    Article  CAS  Google Scholar 

  • Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi O-I, Tsatsakis AM, Rizos AK (2016) A global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236

    Article  CAS  Google Scholar 

  • Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, DeWitt JC, Knappe DRU, Maffini MV, Miller MF, Pelch KE, Reade A, Soehl A, Trier X, Venier M, Wagner CC, Wang Z, Blum A (2020) Scientific basis for managing PFAS as a chemical class. Environ Sci Technol Lett 7(8):532–543

    Article  CAS  Google Scholar 

  • La Guardia MJ, Hale RC, Harvey E (2006) Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ Sci Technol 40(20):6247–6254

    Article  CAS  Google Scholar 

  • Li W, Wang Y, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani TA, Malarvannan G, Moon H-B, Nakata H, Sinha RK, Tran TM, Kannan K (2019) Organophosphate esters in indoor dust from 12 countries: concentrations, composition profiles, and human exposure. Environ Int 133:105178

    Article  CAS  Google Scholar 

  • Li Z, Zhu Y, Wang D, Zhang X, Jones KC, Ma J, Wang P, Yang R, Li Y, Pei Z, Zhang Q, Jiang G (2021) Modeling of flame retardants in typical urban indoor environments in China during 2010–2030: influence of policy and decoration and implications for human exposure. Environ Sci Technol 55:11745–11755

    Article  CAS  Google Scholar 

  • Liang Y, Xu Y (2014) Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment. Environ Sci Technol 48(8):4475–4484

    Article  CAS  Google Scholar 

  • Liang Y, Liu X, Allen MR (2018a) Measurements of parameters controlling the emissions of organophosphate flame retardants in indoor environments. Environ Sci Technol 52(10):5821–5829

    Article  CAS  Google Scholar 

  • Liang Y, Liu X, Allen MR (2018b) Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces. Chemosphere 193:754–762

    Article  CAS  Google Scholar 

  • Liang Y, Liu X, Allen MR (2019) The influence of temperature on the emissions of organophosphate ester flame retardants from polyisocyanurate foam: measurement and modeling. Chemosphere 233:347–354

    Article  CAS  Google Scholar 

  • Little JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA (2012) Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ Sci Technol 46(20):11171–11178

    Article  CAS  Google Scholar 

  • Liu X, Folk E (2021) Sorption and migration of organophosphate flame retardants between sources and settled dust. Chemosphere 278:130415

    Article  CAS  Google Scholar 

  • Liu C, Zhang Y (2016) Characterizing the equilibrium relationship between DEHP in PVC flooring and air using a closed-chamber SPME method. Build Environ 95:283–290

    Article  Google Scholar 

  • Liu X, Allen MR, Roache NF (2016) Characterization of organophosphorus flame retardants’ sorption on building materials and consumer products. Atmos Environ 140:333–341

    Article  CAS  Google Scholar 

  • Lucattini L, Poma G, Covaci A, de Boer J, Lamoree M, Leonards P (2018) A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere 201:466–482

    Article  CAS  Google Scholar 

  • Marklund A, Andersson B, Haglund P (2003) Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 53(9):1137–1146

    Article  CAS  Google Scholar 

  • Mayer FL, Stalling DL, Johnson JL (1972) Phthalate esters as environmental contaminants. Nature 238(5364):411–413

    Article  CAS  Google Scholar 

  • Melymuk L, Bohlin-Nizzetto P, Vojta S, Kratka M, Kukucka P, Audy O, Pribylova P, Klanova J (2016) Distribution of legacy and emerging semivolatile organic compounds in five indoor matrices in a residential environment. Chemosphere 153:179–186

    Article  CAS  Google Scholar 

  • Morales-McDevitt ME (2021) The air that we breathe: neutral PFAS in indoor and outdoor air. Open Access Master’s Theses. Paper 1950. https://digitalcommons.uri.edu/theses/1950

  • Nagorka R, Koschorreck J (2020) Trends for plasticizers in German freshwater environments – evidence for the substitution of DEHP with emerging phthalate and non-phthalate alternatives. Environ Pollut 262:114237

    Article  CAS  Google Scholar 

  • Nakayama SF, Yoshikane M, Onoda Y, Nishihama Y, Iwai-Shimada M, Takagi M, Kobayashi Y, Isobe T (2019) Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal Chem 121:115410

    Article  CAS  Google Scholar 

  • NIH (2019) Perfluoroalkyl and polyfluoroalkyl substances (PFAS). Accessed 21 Sept 2021

    Google Scholar 

  • Noguchi M, Yamasaki A (2016) Passive flux sampler measurements of emission rates of phthalates from poly(vinyl chloride) sheets. Build Environ 100:197–202

    Article  Google Scholar 

  • OECD (2013) Synthesis paper on per- and polyfluorinated chemicals (PFCs). Accessed 21 Sept 2021

    Google Scholar 

  • Ohura T, Amagai T, Shen X, Li S, Zhang P, Zhu L (2009) Comparative study on indoor air quality in Japan and China: characteristics of residential indoor and outdoor VOCs. Atmos Environ 43(40):6352–6359

    Article  CAS  Google Scholar 

  • Okeme JO, Rodgers TFM, Jantunen LM, Diamond ML (2018) Examining the gas-particle partitioning of organophosphate esters: how reliable are air measurements? Environ Sci Technol 52(23):13834–13844

    Article  CAS  Google Scholar 

  • Pantelaki I, Voutsa D (2019) Organophosphate flame retardants (OPFRs): a review on analytical methods and occurrence in wastewater and aquatic environment. Sci Total Environ 649:247–263

    Article  CAS  Google Scholar 

  • Pei J, Yin Y, Cao J, Sun Y, Liu J, Zhang Y (2017) Time dependence of characteristic parameter for semi-volatile organic compounds (SVOCs) emitted from indoor materials. Build Environ 125:339–347

    Article  Google Scholar 

  • Raffy G, Mercier F, Blanchard O, Derbez M, Dassonville C, Bonvallot N, Glorennec P, Le Bot B (2017) Semi-volatile organic compounds in the air and dust of 30 French schools: a pilot study. Indoor Air 27(1):114–127

    Article  CAS  Google Scholar 

  • Rauert CB (2014) Brominated flame retardant migration into indoor dust. University of Birmingham, Birmingham

    Google Scholar 

  • Rauert C, Harrad S (2015) Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways – a test chamber investigation. Sci Total Environ 536:568–574

    Article  CAS  Google Scholar 

  • Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43(1):170–181

    Article  CAS  Google Scholar 

  • Salthammer T, Goss KU (2019) Predicting the gas/particle distribution of SVOCs in the indoor environment using poly parameter linear free energy relationships. Environ Sci Technol 53(5):2491–2499

    Article  CAS  Google Scholar 

  • Shi S, Cao J, Zhang Y, Zhao B (2018) Emissions of phthalates from indoor flat materials in Chinese residences. Environ Sci Technol 52:13166–13173

    Article  CAS  Google Scholar 

  • Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J (2005) Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: occurrence, partitioning, and human exposure. Environ Sci Technol 39(17):6599–6606

    Article  CAS  Google Scholar 

  • Szabo DT (2014) Hexabromocyclododecane. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic, Oxford, pp 864–868

    Chapter  Google Scholar 

  • UNEP (2011) Report of the persistent organic pollutants review committee on the work of its seventh meeting-Addendum: Risk management evaluation on hexabromocyclododecane (document: UNEP/POPS/POPRC.7/5). Available at: https://www.informea.org/en/risk-management-evaluation-hexabromocyclododecane (accessed on March 9, 2022)

  • USCPSC (2017) Guidance for hazardous additive, non-polymeric organohalogen flame retardants in certain consumer products. https://www.cpsc.gov/Business%2D%2DManufacturing/Business-Education/Business-Guidance/flame-retardants. Accessed 19 Sept 2021

  • USEPA (2015) Assessments conducted on TSCA work plan chemicals prior to June 22, 2016. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/assessments-conducted-tsca-work-plan-chemicals-prior#process. Accessed 19 Sept 2021

  • USEPA (2019) EPA finalizes list of next 20 chemicals to undergo risk evaluation under TSCA. https://www.epa.gov/newsreleases/epa-finalizes-list-next-20-chemicals-undergo-risk-evaluation-under-tsca. Accessed 19 Sept 2021

  • USEPA CompTox Chemicals Dashboard. https://comptox.epa.gov/dashboard. Accessed 21 Sept 2021

  • Van Loy MD, Lee VC, Gundel LA, Daisey JM, Sextro RG, Nazaroff WW (1997) Dynamic behavior of semivolatile organic compounds in indoor air. 1. Nicotine in a stainless steel chamber. Environ Sci Technol 31(9):2554–2561

    Article  Google Scholar 

  • Venkatesan AK, Halden RU (2013) National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey. J Hazard Mater 252-253:413–418

    Article  CAS  Google Scholar 

  • Wang L, Zhao B, Liu C, Lin H, Yang X, Zhang Y (2010) Indoor SVOC pollution in China: a review. Chin Sci Bull 55(15):1469–1478

    Article  CAS  Google Scholar 

  • Wang X, Tao W, Xu Y, Feng J, Wang F (2014) Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos Environ 87:146–152

    Article  CAS  Google Scholar 

  • Wang Z, DeWitt JC, Higgins CP, Cousins IT (2017) A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 51(5):2508–2518

    Article  CAS  Google Scholar 

  • Wang Z, DeWitt J, Higgins CP, Cousins IT (2018) Correction to “A never-ending story of per- and polyfluoroalkyl substances (PFASs)?”. Environ Sci Technol 52(5):3325–3325

    Article  CAS  Google Scholar 

  • Wei W, Dassonville C, Sivanantham S, Gregoire A, Mercier F, Le Bot B, Malingre L, Ramalho O, Derbez M, Mandin C (2021) Semivolatile organic compounds in French schools: partitioning between the gas phase, airborne particles and settled dust. Indoor Air 31(1):156–169

    Article  CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43(1):153–169

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42(40):9018–9040

    Article  CAS  Google Scholar 

  • WHO (1989) Indoor air quality: organic pollutants. World Health Organization, Copenhagen

    Google Scholar 

  • Wu Y, Eichler CM, Chen S, Little JC (2016a) Simple method to measure the vapor pressure of phthalates and their aternatives. Environ Sci Technol 50(18):10082–10088

    Article  CAS  Google Scholar 

  • Wu Y, Xie M, Cox SS, Marr LC, Little JC (2016b) A simple method to measure the gas-phase SVOC concentration adjacent to a material surface. Indoor Air 26(6):903–912

    Article  CAS  Google Scholar 

  • Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W (2020) Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: a review. Environ Res 187:109531

    Article  CAS  Google Scholar 

  • Xu Y, Little JC (2006) Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol 40(2):456–461

    Article  CAS  Google Scholar 

  • Xu Y, Zhang J (2011) Understanding SVOCs. ASHRAE J 53(12):121–126

    Google Scholar 

  • Xu Y, Cohen HEA, Little JC (2010) Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: sensitivity, uncertainty, and implications for biomonitoring. Environ Health Perspect 118(2):253–258

    Article  CAS  Google Scholar 

  • Xu Y, Liu Z, Park J, Clausen PA, Benning JL, Little JC (2012) Measuring and predicting the emission rate of phthalate plasticizer from vinyl flooring in a specially-designed chamber. Environ Sci Technol 46(22):12534–12541

    Article  CAS  Google Scholar 

  • Yu G, Bu Q, Cao Z, Du X, Xia J, Wu M, Huang J (2016) Brominated flame retardants (BFRs): a review on environmental contamination in China. Chemosphere 150:479–490

    Article  CAS  Google Scholar 

  • Zhang Y, Mo J, Weschler CJ (2013) Reducing health risks from indoor exposures in rapidly developing urban China. Environ Health Perspect 121(7):751–755

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong J, Mo J, Gong M, Cao J (2016) Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications. Indoor Air 26(1):39–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the Natural Science Foundation of China (No. 51908563), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011179), Science and Technology Program of Guangzhou (No. 202102020990), and the special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control (No. BZ0344KF20-11) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, J. (2022). Semi-Volatile Organic Compounds (SVOCs). In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics