Skip to main content

X-Ray Computed Tomography for Dimensional Metrology

  • Reference work entry
  • First Online:
Metrology

Part of the book series: Precision Manufacturing ((PRECISION))

Abstract

X-ray computed tomography (CT) has emerged over the last years as an innovative dimensional measuring technique and has been increasingly applied in industry. This chapter describes the state of the art, the main technical characteristics, and examples of applications of CT in industrial dimensional metrology. Although still in its youth, metrological CT offers unique solutions and provides several advantages in comparison to other coordinate measuring systems such as tactile coordinate measuring machines. In particular, CT systems allow reconstructing holistic three-dimensional models of the scanned workpieces, which are then used to obtain nondestructive and noncontact measurements of outer as well as inner features. However, important drawbacks still limit a wider acceptance of CT in industrial metrology. One of the most critical aspects is the establishment of metrological traceability, which is often challenging due to many and complex error sources that affect CT measurements and complicate the evaluation of metrological performances and of task-specific uncertainties

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affatato S, Spinelli M, Zavalloni M, Traina F, Carmignato S, Toni A (2010) Ceramic-on-metal for total hip replacement: mixing and matching can lead to high wear. Artif Organs 34(4):319–323. https://doi.org/10.1111/j.1525-1594.2009.00854

    Article  Google Scholar 

  • Affatato S, Zanini F, Carmignato S (2017) Quantification of wear and deformation in different configurations of polyethylene acetabular cups using micro X-ray computed tomography. Materials 10(3):259. https://doi.org/10.3390/ma10030259

    Article  Google Scholar 

  • Angel J, De Chiffre L (2014) Comparison on computed tomography using industrial items. CIRP Ann 63:473–476

    Article  Google Scholar 

  • Arenhart FA, Nardelli VC, Donatelli GD (2015) Characterization of the metrological structural resolution of CT systems using a multi-wave standard. In: Proceedings of XXI IMEKO World Congress, Prague.

    Google Scholar 

  • ASTM E 1441-11 – Standard Guide for Computed Tomography (CT) Imaging, ASTM International, United States

    Google Scholar 

  • Bartscher M, Ehrig K, Staude A, Goebbels J, Neuschaefer-Rube U (2011) Application of an industrial CT reference standard for cast freeform shaped workpieces. Digital Industrial Radiology and Computed Tomography (DIR). 20-22 June, 2011. Berlin, Germany.

    Google Scholar 

  • Bartscher M, Bremer H, Birth T, Staude A, Ehrig K (2012) The resolution of dimensional CT – an edge-based analysis. In: Proceedings of the 2012 conference on industrial computed tomography (ICT 2012). 19-21 September 2012, Wels, Austria.

    Google Scholar 

  • Bartscher M, Sato O, Hartig F, Neuschaefer-Rube U (2014) Current state of standardization in the field of dimensional computed tomography. Meas Sci Technol 25:064013. https://doi.org/10.1088/0957-0233/25/6/06

    Article  Google Scholar 

  • Bartscher M, Neuschaefer-Rube U, Illemann J, Borges de Oliveira F, Stolfi A, Carmignato S (2018) Qualification and testing of CT systems. In: Carmignato S, Dewulf W, Leach R (eds) Industrial X-ray computed tomography. Springer, Cham, pp 185–228. https://doi.org/10.1007/978-3-319-59573-3_6

    Google Scholar 

  • Bioclinica (2011) The evolution of CT scan clinical trials. http://www.bioclinica.com/blog/evolution-ct-scan-clinical-trials. Accessed 17 Mar 2019

  • BIPM JCGM 100 (2008) Evaluation of measurement data – guide to the expression of uncertainty in measurement. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Borges de Oliveira F, Bartscher M, Neuschaefer-Rube U (2015) Analysis of combined probing measurement error and length measurement error test for acceptance testing in dimensional computed tomography. In: Proceedings of DIR 2015 in NDT.net, online at: www.ndt.net/events/DIR2015/app/content/Paper/31_BorgesdeOliveira.pdf

  • Borges de Oliveira F, Stolfi A, Bartscher M, De Chiffre L (2016) Experimental investigation of surface determination process on multi-material components for dimensional computed tomography. Case Stud Nondestruct Test Eval 6(Part B):93–103. https://doi.org/10.1016/j.csndt.2016.04.003

    Article  Google Scholar 

  • Buratti A, Bredemann J, Pavan M, Schmitt R, Carmignato S (2018) Applications of CT for dimensional metrology. In: Carmignato S, Dewulf W, Leach R (eds) Industrial X-ray computed tomography. Springer, Cham, pp 333–369. https://doi.org/10.1007/978-3-319-59573-3_9

    Google Scholar 

  • Buzug TM (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer, Berlin

    Google Scholar 

  • Carmignato S (2012) Accuracy of industrial computed tomography measurements: experimental results from an international comparison. CIRP Ann 61(1):491–494. https://doi.org/10.1016/j.cirp.2012.03.021

    Article  Google Scholar 

  • Carmignato S, De Chiffre L (2003) A new method for thread calibration on coordinate measuring machines. CIRP Ann 52(1):447–450. https://doi.org/10.1016/S0007-8506(07)60622-2

    Article  Google Scholar 

  • Carmignato S, Savio E (2011) Traceable volume measurements using coordinate measuring systems. CIRP Ann 60(1):519–522. https://doi.org/10.1016/j.cirp.2011.03.061

    Article  Google Scholar 

  • Carmignato S, Dreossi D, Mancini L, Marinello F, Tromba G, Savio E (2009) Testing of x-ray microtomography system using a traceable geometrical standard. Meas Sci Technol 20:084021. https://doi.org/10.1088/0957-0233/20/8/084021. IOP Publishing

    Article  Google Scholar 

  • Carmignato S, Voltan A, Savio E (2010) Metrological performance of optical coordinate measuring machines under industrial conditions. CIRP Ann 59(1):497–500. https://doi.org/10.1016/j.cirp.2010.03.128

    Article  Google Scholar 

  • Carmignato S, Pierobon A, Rampazzo P, Parisatto M, Savio E (2012) CT for industrial metrology. Accuracy and structural resolution of CT dimensional measurements. In: Proceedings of iCT 2012 in NDT.net, online at: http://www.ndt.net/article/ctc2012/papers/173.pdf

  • Carmignato S, Aloisi V, Medeossi F, Zanini F, Savio E (2017) Influence of surface roughness on computed tomography dimensional measurements. CIRP Ann 66(1):499–502. https://doi.org/10.1016/j.cirp.2017.04.067

    Article  Google Scholar 

  • Carmignato S, Dewulf W, Leach R (2018) Industrial X-ray computed tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-59573-3

    Book  Google Scholar 

  • Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA (2005) Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med Phys 32:968–983

    Article  Google Scholar 

  • Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34(9):2722–2727

    Article  Google Scholar 

  • De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Ann 63(2):655–677. https://doi.org/10.1016/j.cirp.2014.05.011

    Article  Google Scholar 

  • Dewulf W, Tan Y, Kiekens K (2012) Sense and non sense of beam hardening correction in CT metrology. CIRP Ann 61(1):495–498

    Article  Google Scholar 

  • Dewulf W, Kiekens K, Tan Y, Welkenhuyzen F, Kruth J-P (2013) Uncertainty determination and quantification for dimensional measurements with industrial computed tomography. CIRP Ann 62(1):535–538

    Article  Google Scholar 

  • Dewulf W, Ferrucci M, Ametova E, HeÅ™mánek P, Probst G, Boeckmans B, Craeghs T, Carmignato S (2018) Enhanced dimensional measurement by fast determination and compensation of geometrical misalignments of X-ray computed tomography instruments. CIRP Ann 67(1):523-526. https://doi.org/10.1016/j.cirp.2018.04.124

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619

    Article  Google Scholar 

  • Ferrucci M, Leach RK, Giusca C, Carmignato S, Dewulf W (2015) Towards geometrical calibration of X-ray computed tomography systems – a review. Meas Sci Technol 26:092003. https://doi.org/10.1088/0957-0233/26/9/092003

    Article  Google Scholar 

  • Ferrucci M, Ametova E, Carmignato S, Dewulf W (2016) Evaluating the effects of detector angular misalignments on simulated computed tomography data. Precis Eng 45:230–241. https://doi.org/10.1016/j.precisioneng.2016.03.001

    Article  Google Scholar 

  • Fessler JA (2000) Statistical image reconstruction methods for transmission tomography. In: Handbook of medical imaging, vol 2. Medical image processing and analysis. SPIE Press, Bellingham

    Google Scholar 

  • Flessner M, Vujaklija N, Helmecke E, Hausotte T (2014) Determination of metrological structural resolution of a CT system using the frequency response on surface structures. In: Proceedings of MacroScale, Vienna

    Google Scholar 

  • Frank G (1940) Verfahren zur herstellung von körperschnittbildern mittels röntgenstrahlen. German Patent 693,374

    Google Scholar 

  • Heinzl C, Kastner J, Möller T, Gröller E (2008) Statistical analysis of multi-material components using dual energy CT. Proceedings of workshop VMV 2008 (vol. 8. pp 179–188), Konstanz, Germany.

    Google Scholar 

  • Hermanek P, Carmignato S (2016) Reference object for evaluating the accuracy of porosity measurements by X-ray computed tomography. Case Stud Nondestruct Test Eval 6:122–127. https://doi.org/10.1016/j.csndt.2016.05.003.

    Article  Google Scholar 

  • Hermanek P, Carmignato S (2017) Porosity measurements by X-ray computed tomography: accuracy evaluation using a calibrated object. Precis Eng 49:377–387. https://doi.org/10.1016/j.precisioneng.2017.03.007

    Article  Google Scholar 

  • Hermanek P, Zanini F, Carmignato S (2019) Traceable porosity measurements in industrial components using X-ray computed tomography. ASME J Manuf Sci Eng. https://doi.org/10.1115/1.4043192

    Article  Google Scholar 

  • Hermanek P, Rathore JS, Aloisi V, Carmignato S (2018) Principles of X-ray computed tomography. In: Carmignato S, Dewulf W, Leach R (eds) Industrial X-ray computed tomography. Springer, Cham, pp 25–67. https://doi.org/10.1007/978-3-319-59573-3_2

    Google Scholar 

  • Hermanek P, Borges de Oliveira F, Carmignato S, Bartscher M (2017b) Experimental investigation of new multi-material gap reference standard for testing computed tomography systems. In: Proceedings of iCT2017-7th conference on industrial computed tomography

    Google Scholar 

  • Hiller J, Maisl M, Reindl LM (2012) Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications. Meas Sci Technol 23(8):85404

    Article  Google Scholar 

  • Hounsfield G (1976) Historical notes on computerized axial tomography. J Can Assoc Radiol 27(3):135–142

    Google Scholar 

  • Hsieh J (2015) Computed tomography: principles, design, artifacts, and recent advances. SPIE Press, Bellingham

    Book  Google Scholar 

  • Hunter A, McDavid W (2012) Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac Radiol 41(3):217–223

    Article  Google Scholar 

  • Illemann J, Bartscher M, Jusko O, Hartig F, Neuschaefer-Rube U, Wendt K (2014) Procedure and reference standard to determine the structural resolution in coordinate metrology. Meas Sci Technol 25:064015. https://doi.org/10.1088/0957-0233/25/6/064

    Article  Google Scholar 

  • Impactscan (2013) CT History. http://www.impactscan.org/CThistory.htm. Accessed 20 Mar 2019

  • ISO 10360 Part 2 (2009) Geometrical product specifications (GPS) – acceptance and reverification tests for coordinate measuring machines (CMM) – part 2: CMMs used for measuring linear dimensions. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 10360 Part 5 (2019) Geometrical product specifications (GPS) – acceptance and reverification tests for coordinate measuring machines (CMM) – part 5: CMMs using single and multiple stylus contacting probing systems. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 15530 Part 3 (2011) Geometrical product specifications (GPS) – coordinate measuring machines (CMM): technique for determining the uncertainty of measurement – part 3: use of calibrated workpieces or measurement standards. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Khademzadeh S, Carmignato S, Parvin N, Zanini F, Bariani PF (2016) Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy. Mater Des 90:745–752. https://doi.org/10.1016/j.matdes.2015.10.161

    Article  Google Scholar 

  • Khademzadeh S, Zanini F, Bariani PF, Carmignato S (2018) Precision additive manufacturing of NiTi parts using micro direct metal deposition. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-1822-3

    Article  Google Scholar 

  • Kiekens K, Welkenhuyzen F, Tan Y, Bleys P, Voet A, Kruth J-P, Dewulf W (2011) A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Meas Sci Technol 22:115502

    Article  Google Scholar 

  • Kruth J-P, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A (2011) Computed tomography for dimensional metrology. CIRP Ann 60(2):821–842. https://doi.org/10.1016/j.cirp.2011.05.006

    Article  Google Scholar 

  • Ledley R, Wilson J, Huang H (1974) ACTA (automatic computerized transverse axial) – the whole body tomographic X-ray scanner. Proc SPIE 0057:94–107

    Article  Google Scholar 

  • Leonard F, Brown SB, Withers PJ, Mummery PM, McCarthy MB (2014) A new method of performance verification for x-ray computed tomography measurements. Meas Sci Technol 25:065401. https://doi.org/10.1088/0957-0233/25/6/065401. 10pp

    Article  Google Scholar 

  • Lifton JJ, Carmignato S (2017) Simulating the influence of scatter and beam hardening in dimensional computed tomography. Meas Sci Technol 28(10):104001. https://doi.org/10.1088/1361-6501/aa80b2

    Article  Google Scholar 

  • Marinello F, Savio E, Carmignato S, De Chiffre L (2008) Calibration artefact for the microscale with high aspect ratio: the fiber gauge. CIRP Ann 57(1):497–500. https://doi.org/10.1016/j.cirp.2008.03.086

    Article  Google Scholar 

  • Meneghetti G, Ricotta M, Lucchetta G, Carmignato S (2014) An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites. Compos Part B 65:17–25. https://doi.org/10.1016/j.compositesb.2014.01.027

    Article  Google Scholar 

  • Möhring HC et al (2015) A testpart for interdisciplinary analyses in micro production engineering. Procedia CIRP 28:106–112. https://doi.org/10.1016/j.procir.2015.04.018

    Article  Google Scholar 

  • Müller P (2013) Coordinate metrology by traceable computed tomography. PhD thesis, Department of Mechanical Engineering, Technical University of Denmark, Lyngby

    Google Scholar 

  • Müller P, Hiller J, Dai Y, Andreasen JL, Hansen HN, De Chiffre L (2014) Estimation of measurement uncertainties in X-ray computed tomography metrology using the substitution method. CIRP J Manuf Sci Technol 7:222–232

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from grey level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Panetta D (2016) Advances in X-ray detectors for clinical and preclinical computed tomography. Nucl Instrum Methods Phys Res Sect A 809:2–12

    Article  Google Scholar 

  • Paxton R, Ambrose J (1974) The EMI scanner. A brief review of the first 650 patients. Br J Radiol 47(561):530–565

    Article  Google Scholar 

  • Radon J (1986) On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 5(4):170–176

    Article  Google Scholar 

  • Reimers P, Goebbels J (1983) New possibilities of non-destructive evaluation by X-ray computed tomography. Mater Eval 41:732–737

    Google Scholar 

  • Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomicka F, Degischer HP (2009) Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick – Baez optics. Scripta Mater 61(7):760–763

    Article  Google Scholar 

  • Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann 56(2):810–835

    Article  Google Scholar 

  • Sbettega E, Zanini F, Savio E, Benedetti M, Carmignato S (2018) X-ray computed tomography dimensional measurements of powder bed fusion cellular structures. In: Proceedings of the 18th international conference of the European Society for precision engineering and nanotechnology, EUSPEN 2018, Venice

    Google Scholar 

  • Schmidt M et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–584

    Article  Google Scholar 

  • Schmitt R, Niggemann C (2010) Uncertainty in measurement for x-ray-computed tomography using calibrated work pieces. Meas Sci Technol 21(5):054008

    Article  Google Scholar 

  • Schmitt RH, Buratti A, Grozmani N, Voigtmann C, Peterek M (2018) Model-based optimisation of CT imaging parameters for dimensional measurements on multimaterial workpieces. CIRP Ann 67(1), 527-530.

    Article  Google Scholar 

  • Schörner K (2012) Development of methods for scatter artifact correction in industrial X-ray cone-beam computed tomography. Technische Universität München. http://mediatum.ub.tum.de/doc/1097730/document.pdf. Accessed 24 Jan 2018

  • Smith SW (1999) The scientist and engineer’s guide to digital signal processing, 2nd edn. California Technical Publishing. California, USA.

    Google Scholar 

  • Stolfi A, De Chiffre L (2018) Interlaboratory comparison of a physical and a virtual assembly measured by CT. Precis Eng 51:263–270

    Article  Google Scholar 

  • Stolfi A, De Chiffre L, Carli L (2017) Integrated quality control of precision assemblies using computed tomography. Kgs. Danmarks Tekniske Universitet (DTU), Lyngby

    Google Scholar 

  • Taguchi K, Iwanczyk JS (2013) Vision 20/20: single photon counting X-ray detectors in medical imaging. Med Phys 40(10):100901

    Article  Google Scholar 

  • Thompson A, Senin N, Giusca C, Leach R (2017) Topography of selectively laser melted surfaces: a comparison of different measurement methods. CIRP Ann 66(1):543–546. https://doi.org/10.1016/j.cirp.2017.04.075

    Article  Google Scholar 

  • Townsend A, Pagani L, Scott PJ, Blunt L (2017) Areal surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts. Precis Eng 48:254–264

    Article  Google Scholar 

  • Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mat Sci Eng A 528:7423–7431

    Article  Google Scholar 

  • VDI/VDE 2630 Part 1.2 (2008) Computed tomography in dimensional measurement – influencing variables on measurement results and recommendations for computed tomography dimensional measurements. Verein Deutscher Ingenieure e.V., Dusseldorf

    Google Scholar 

  • VDI/VDE 2630 Part 1.3 (2012) Computed tomography in dimensional measurement – guideline for the application of DIN EN ISO 10360 for coordinate measuring machines with CT-sensors. Verein Deutscher Ingenieure e.V., Dusseldorf

    Google Scholar 

  • VDI/VDE 2630 Part 2.1 (2015) Computed tomography in dimensional measurement – determination of the uncertainty of measurement and the test process suitability of coordinate measurement systems with CT sensors. Verein Deutscher Ingenieure e.V., Dusseldorf

    Google Scholar 

  • Villarraga-Gómez H, Clark D, Smith S (2016) Effect of the number of radiographs taken in CT for dimensional metrology. In: Proceedings of the 16th international conference of the European society for precision engineering and nanotechnology, euspen 2016. Nottingham, UK.

    Google Scholar 

  • Weckenmann A, Krämer P (2013) Predetermination of measurement uncertainty in the application of computed tomography. Prod Lifecycle Manag: Geom Var, Chapter 17: 317–330

    Google Scholar 

  • Weissenböck J, Amirkhanov A, Li W, Reh A, Amirkhanov A, Gröller E, Kastner J, Heinzl C (2014) FiberScout: an interactive tool for exploring and analyzing fiber reinforced polymers. In: Proceedings of IEEE pacific visualization symposium (PacificVis), 2014, Yokohama, pp 153–160

    Google Scholar 

  • Welkenhuyzen F (2015) Investigation of the accuracy of an X-ray CT scanner for dimensional metrology with the aid of simulations and calibrated artifacts. PhD thesis, KU Leuven

    Google Scholar 

  • Wilhelm RG, Hocken R, Schwenke H (2001) Task specific uncertainty in coordinate measurement. CIRP Ann 50(2):553–563

    Article  Google Scholar 

  • Wits WW, Carmignato S, Zanini F, Vaneker TH (2016) Porosity testing methods for the quality assessment of selective laser melted parts. CIRP Ann 65(1):201–204. https://doi.org/10.1016/j.cirp.2016.04.054

    Article  Google Scholar 

  • Xue L, Suzuki H, Ohtake Y, Fujimoto H, Abe M, Sato O, Takatsuji T (2015) Numerical analysis of the Feldkamp-Davis-Kress effect on industrial x-ray computed tomography for dimensional metrology. Journal of Computing and Information Science in Engineering, 15(2), 021008.

    Article  Google Scholar 

  • Yagüe-Fabra JA, Ontiveros S, Jiménez R, Chitchian S, Tosello G, Carmignato S (2013) A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications. CIRP Ann 62(1):531–534. https://doi.org/10.1016/j.cirp.2013.03.016

    Article  Google Scholar 

  • Zanini F, Carmignato S (2017) Two-spheres method for evaluating the metrological structural resolution in dimensional computed tomography. Meas Sci Technol 28:114002. https://doi.org/10.1088/1361-6501/aa85b7

    Article  Google Scholar 

  • Zanini F, Carmignato S (2018) X-ray computed tomography for measurement of additively manufactured metal threaded parts. In: Proceedings – ASPE/EUSPEN 2018 Summer topical meeting: advancing precision in additive manufacturing.

    Google Scholar 

  • Zanini F, Carmignato S, Savio E (2017) Assembly analysis of titanium dental implants using X-ray computed tomography. In: Proceedings of the 17th international conference of the European society for precision engineering and nanotechnology, euspen 2017, pp 489–490. Hannover, Germany.

    Google Scholar 

  • Zanini F, Carmignato S, Savio E, Affatato S (2018a) Uncertainty determination for X-ray computed tomography wear assessment of polyethylene hip joint prostheses. Precis Eng. https://doi.org/10.1016/j.precisioneng.2018.02.009

    Article  Google Scholar 

  • Zanini F, Sbettega E, Sorgato M, Carmignato S (2018b) New approach for verifying the accuracy of X-ray computed tomography measurements of surface topographies in additively manufactured metal parts. J Nondestruct Eval 38:12

    Article  Google Scholar 

  • Zanini F, Gerardi G, Weissenböck J, Heinzl C, Kastner J, Carmignato S (2019a). Experimental investigation on the accuracy of XCT measurement of fiber length in fiber reinforced polymers. Proceedings of Conference on Industrial Computed Tomography (iCT2019); 13–15 February 2019, Padova, Italy

    Google Scholar 

  • Zanini F, Pagani L, Savio E, Carmignato S (2019b) Characterisation of additively manufactured metal surfaces by means of X-ray computed tomography and generalised surface texture parameters. CIRP Ann. 68/1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Carmignato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zanini, F., Carmignato, S. (2019). X-Ray Computed Tomography for Dimensional Metrology. In: Gao, W. (eds) Metrology. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4938-5_19

Download citation

Publish with us

Policies and ethics