Skip to main content

BF3 Fluorination for Preparing Alkyl Fluorides

  • Reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 730 Accesses

Introduction

Monofluorination is an important access to introduce fluorine atom into organic molecules, which is realized by the strategies employing diethylaminosulfur trifluoride (DAST), tris(diethylamino)sulfonium difluorotrimethylsilicate (TAS-F), hydrogen fluoride, etc. as reagents as shown in other entries of the book. BF3.OEt2 as an ubiquitous reagent is usually used as a Lewis acid in synthetic organic transformations. However, BF3·OEt2 may also serve as an effective nucleophilic fluoride source in the fluorination reaction owing to the property of boron to form ate complex with some Lewis bases and anions. The mechanism of BF3 for fluoride transfer possibly involves a migration of the fluoride via an ate complex readily generated, trifluoroborate with the form of BF3X (X = Lewis base). Because of its high fluoride content and easy handling in the reaction, the use of BF3·OEt2as a fluorine source has attracted great attention of synthetic chemists. A comprehensive review has...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cresswell AJ; Davies SG, Roberts PM, Thomson JE (2015) Beyond the Balz−Schiemann Reaction: The Utility of Tetrafluoroborates and Boron Trifluoride as Nucleophilic Fluoride Sources. Chem Rev 115: 566−611.

    CAS  PubMed  Google Scholar 

  2. Jaber JJ, Mitsui K, Rychnovsky SD (2001) Stereoselectivity and regioselectivity in the segment-coupling Prins cyclization. J Org Chem 66: 4679–4686.

    CAS  PubMed  Google Scholar 

  3. Al-Mutairi EH, Crosby SR, Darzi J, Harding JR, Hughes RA, King CD, Simpson TJ, Smith RW, Willis CL (2001) Stereocontrolled synthesis of 2,4,5-trisubstituted tetrahydropyrans. Chem Commun 835-836.

    Google Scholar 

  4. Kataoka K, Ode Y, Matsumoto M, Nokami J (2006) Convenient synthesis of highly optically active 2,3,4,6-tetrasubstituted tetrahydropyrans via Prins cyclization reaction (PCR) of optically active homoallylic alcohols with aldehydes. Tetrahedron 62: 2471−2483.

    CAS  Google Scholar 

  5. Launay GG, Slawin AMZ, O’Hagan D (2010) Prins fluorination cyclisations: preparation of 4-fluoro-pyran and -piperidine heterocycles. Beilstein J Org Chem 6: 41.

    PubMed  PubMed Central  Google Scholar 

  6. Wölfling J, Frank É, Schneider G, Tietze LF (1998) Synthesis of azasteroids and D-homosteroids by intramolecular cyclization reactions of steroid arylimines. Synlett 1205−1206.

    Google Scholar 

  7. Wölfling J, Frank É, Schneider G, Tietze LF (1999) Synthesis of novel steroid alkaloids by cyclization of arylimines from estrone. Eur J Org Chem 3013–3020.

    Google Scholar 

  8. Berge J, Claridge S, Mann A, Muller C, Tyrrell E (1997) A diastereoselective synthesis of benzopyrans using a novel intramolecular Nicholas reaction in the key cyclisation step. Tetrahedron Lett 38: 685–686.

    CAS  Google Scholar 

  9. Mann AL, Muller C, Tyrrell E (1998) A diastereoselective cobalt-mediated synthesis of benzopyrans using a novel variation of an intramolecular Nicholas reaction in the key cyclisation step: optimisation and biological evaluation. J Chem Soc Perkin Trans 1 1427–1438.

    Google Scholar 

  10. Tyrrell E, Millet J, Tesfa KH, Williams N, Mann A, Tillett C, Muller C (2007) A study into asymmetric Nicholas cyclisation reactions. Tetrahedron 63: 12769−12778.

    CAS  Google Scholar 

  11. Olier C, Gastaldi S, Christie SDR, Bertrand MP (2007) Unprecedented cyclization of Nicholas cations onto unactivated terminal alkenes: tandem trapping of cationic intermediates. Synlett 423−426.

    Google Scholar 

  12. Patel MM, Green JR (1999) [4+3] and fluorinative [4+3] cycloadditions of alkyne 1,4-diether dicobalt complexes. Chem Commun 509−510.

    Google Scholar 

  13. Lu Y, Green JR (2001) Tandem 4+3 cycloaddition/nucleophilic trapping reactions of butyne-1,4-diether dicobalt hexacarbonyl complexes. Synlett 243−247.

    Google Scholar 

  14. Cui J, Jia Q, Feng RZ, Liu SS, He T, Zhang C (2014) Boron trifluoride etherate functioning as a fluorine source in an iodosobenzene-mediated intramolecular aminofluorination of homoallylic amines. Org Lett 16: 1442−1445.

    CAS  PubMed  Google Scholar 

  15. Liu GQ, Li YM (2014) Regioselective (diacetoxyiodo)benzene-promoted halocyclization of unfunctionalized olefins. J Or. Chem 79: 10094−10109.

    CAS  Google Scholar 

  16. Henbest HB, Wrigley TI (1957) Aspects of stereochemistry. Part IX. The formation of fluorohydrins from the cholesterol 5,6-epoxides and boron trifluoride–ether complex. J Chem Soc 4765−4768.

    Google Scholar 

  17. Bowers A, Ringold HJ (1963) Process for the production of 6-fluoro steroids. U.S. Patent 3115492.

    Google Scholar 

  18. Bowers A, CuÉllar Ibáñez L, Ringold HJ (1959) Steroids—CXX synthesis of halogenated steroid hormones: new routes to 6α-fluorotestosterone and the 6α- and 6β-fluoro analogs of progesterone. The synthesis of 6α- and 6β-fluoro reichstein’s compound “S” and 6α- and 6β-fluorodesoxycorticosterone acetate. Tetrahedron 7: 138−152.

    CAS  Google Scholar 

  19. Fürst A, Plattner PA (1949) Über steroide und sexualhormone. 160. Mitteilung. 2α,3α- und 2β,3β-Oxido-chlolestane; konfiguration der 2-oxy-cholestane. Helv Chim Acta 32: 275−283.

    PubMed  Google Scholar 

  20. Blackett BN, Coxon JM, Hartshorn MP, Richards KE (1969) Reactions of epoxides—XXIV: the BF3-catalysed rearrangement of 4,5- and 5,6-epoxycholestanes. Tetrahedron 25: 4999−5005.

    CAS  Google Scholar 

  21. Blunt JW, Hartshorn MP, Kirk DN (1965) Reactions of epoxides—V: rearrangements of 5,6-epoxy-6-methyl-cholestanes with boron trifluoride. Tetrahedron 21: 559−567.

    CAS  Google Scholar 

  22. Guest IG, Marples BA (1970) Steroids. Part X. Boron trifluoride-catalysed rearrangements of 5,6-epoxy-3β-hydroxy- and 5,6-epoxy-3β-methoxy-steroids. J Chem Soc C 1626−1629.

    Google Scholar 

  23. St Enev V, Tsankova ET (1991) Lewis acid catalysed rearrangement of 7,11-epoxyisogermacrone. Formation of a new carbon skeleton. Tetrahedron 47: 6399−6406.

    Google Scholar 

  24. Coxon JM, Hartshorn MP, Lewis AJ, Richards KE, Swallow WH (1969) Some rearrangements of substituted ethylene oxides. Tetrahedron 25: 4445−4448.

    CAS  Google Scholar 

  25. Coxon JM, Hartshorn MP, Swallow WH (1974) Acetate participation in acyclic epoxide systems. acid-catalyzed rearrangements of trans- and cis-1-acetoxy-3,4-epoxypentanes, -4,5-epoxyhexanes, and -5,6-epoxyheptanes. J Org Chem 39: 1142−1148.

    CAS  Google Scholar 

  26. Ashwell M, Jackson RFW, Kirk JM (1990) Preparation of α-substituted S-phenylthio esters from 2-nitro-2-phenylthio oxiranes. Tetrahedron 46: 7429−7442.

    CAS  Google Scholar 

  27. House HO (1956) The rearrangement of α,β-epoxy ketones. III. The intramolecular nature of the rearrangement. J Am Chem Soc 78: 2298−2302.

    CAS  Google Scholar 

  28. House HO, Ryerson GD (1961) The rearrangement of α,β-epoxy ketones. VIII. Effect of substituents on the rate of rearrangement J Am Chem Soc 83: 979−983.

    CAS  Google Scholar 

  29. Weber FG, Giese H, Koeppel H, Reinhold M, Strobel R, Radeglia R, Storek W (1985) Substituenteneffekte in den 13C-NMR-spektren von diastereomeren chalkondihalogeniden. V. synthese, stereochemie und spektroskopie von chalkonfluorhydrinen. J Prakt Chem 327: 133−143.

    CAS  Google Scholar 

  30. Cresswell AJ, Davies SG, Lee JA, Roberts PM, Russell AJ, Thomson JE, Tyte MJ (2010) β-Fluoroamphetamines via the stereoselective synthesis of benzylic fluorides. Org Lett 12: 2936−2939.

    CAS  PubMed  Google Scholar 

  31. Islas-González G, Puigjaner C, Vidal-Ferran A, Moyano A, Riera A, Pericàs MA (2004) Boron trifluoride-induced reactions of phenylglycidyl ethers: a convenient synthesis of enantiopure, stereodefined fluorohydrins. Tetrahedron Lett 45: 6337−6341.

    Google Scholar 

  32. Giannini G (1996) The use of BF3·OEt2 in the synthesis of fluorinated anthracyclinones. Gazz Chim Ital 126: 771–772.

    CAS  Google Scholar 

  33. Lombardi P, Animati F, Cipollone A, Giannini G, Monteagudo E Arcamone F (1995) Synthesis and conformational preference of novel 8-fluoroanthracyclines. Acta Biochim Pol 42: 433−444.

    CAS  PubMed  Google Scholar 

  34. Voronkov MG, Fedotova LA (1967) Heteroatom derivatives of aziridine. IV. Reaction of ethylenimine with boron trifluoride. Chem Heterocycl Compd 2: 408−412.

    Google Scholar 

  35. Sugihara Y, Iimura S, Nakayama J (2002) Aza-pinacol rearrangement: acid-catalyzed rearrangement of aziridines to imines. Chem Commun 134−135.

    Google Scholar 

  36. Legters J, Willems JGH, Thijs L, Zwanenburg B (1992) Synthesis of functionalized amino acids by ring-opening reactions of aliphatically substituted aziridine-2-carboxylic esters. Recl Trav Chim Pays-Bas 111: 59−68.

    CAS  Google Scholar 

  37. Reddy R, Jaquith JB, Neelagiri VR, Saleh-Hanna S, Durst T (2002) Asymmetric synthesis of the highly methylated tryptophan portion of the hemiasterlin tripeptides. Org Lett 4: 695−697.

    CAS  PubMed  Google Scholar 

  38. Hu XE (2002) Lewis acid promoted regio- and stereoselective hetero nucleophilic addition to a piperidinyl aziridine. synthesis of trans 3-amino-4-substituted piperidines. Tetrahedron Lett 43: 5315−5318.

    CAS  Google Scholar 

  39. Ding CH, Dai LX, Hou XL (2004) An efficient and highly regioselective fluorination of aziridines using BF3·OEt2 as fluorine source. Synlett: 2218−2220.

    Google Scholar 

  40. Pasceri R, Bartrum HE, Hayes CJ, Moody CJ (2012) Nucleophilic fluorination of β-ketoester derivatives with HBF4. Chem Commun 48: 12077−12079.

    CAS  Google Scholar 

  41. Ohno M, Itoh M, Ohashi T, Eguchi S (1993) Ethyl 3-(1-adamantyl)-2-diazo-3-oxopropanoate: synthetic use for the preparation of some adamantane derivatives. Synthesis 793−796.

    Google Scholar 

  42. Heasley VL, Shellhamer DF, Gipe RK, Wiese HC, Oakes ML, Heasley GE (1980) Reaction of methyl hypochlorite with certain olefins in the presence of boron trifluoride. Tetrahedron Lett 21: 4133−4136.

    CAS  Google Scholar 

  43. Heasley VL, Gipe RK, Martin JL, Wiese HC, Oakes ML, Shellhamer DF, Heasley GE, Robinson BL (1983) Boron trifluoride promoted reaction of alkyl hypohalites with alkenes. a new synthesis of fluoro halides. J Org Chem 48: 3195−3199.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Hua Ding or Xue-Long Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ding, CH., Hou, XL. (2020). BF3 Fluorination for Preparing Alkyl Fluorides. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3896-9_43

Download citation

Publish with us

Policies and ethics