Skip to main content

Behavior Modeling and Simulation of an Inertial Sensor

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

  • 235 Accesses

Abstract

Two macromodeling techniques for inertial sensors are discussed in this chapter. The first one is a parametric model order reduction (PMOR) method based on the implicit moment matching to accommodate the parameter variation. The second one is the trajectory piecewise-linear (TPWL) method which is developed for dealing with the strong nonlinearity. For each technique, its effectiveness is demonstrated by the applications to read devices characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: 24th international conference on thermoelectrics, pp 215–218

    Google Scholar 

  • Astrid P (2004) Reduction of process simulation models: a proper orthogonal decomposition approach. Dissertation, Department of Electrical Engineering, Eindhoven University of Technology

    Google Scholar 

  • Bedyk W, Niessner M, Schrag G, Wachutka G, Margesin B, Faes A (2008) Automated extraction of multi-energy domain macromodels demonstrated on capacitive MEMS microphones. Sensors Actuators A Phys 145–146:263–270

    Article  Google Scholar 

  • Bond BN (2010) Stability-preserving model reduction for linear and nonlinear systems arising in analog circuit applications. Dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

    Google Scholar 

  • Bond BN, Daniel L (2007) Stabilizing schemes for piecewise-linear reduced order models via projection and weighting functions. In: 2007 IEEE/ACM international conference on computer-aided design, pp 860–867

    Google Scholar 

  • Chang H, Zhang Y, Xu J, Yuan W (2009) Parametric model order reduction for squeeze film damping in perforated microstructures. Microsyst Technol 15(6):893–898

    Article  Google Scholar 

  • Chang H, Zhang Y, Xie J, Zhou Z,Yuan W (2010) Integrated behavior simulation and verification for a MEMS vibratory gyroscope using parametric model order reduction. J Microelectromech Syst 19(2)

    Google Scholar 

  • Chatterjee AN, Aluru NR (2005) Combined circuit/device modeling and simulation of integrated microfluidic systems. J Microelectromech Syst 14(1):81–95

    Article  Google Scholar 

  • Chen J, Kang S-M(S), Zou J, Liu C, Schutt-Ainé JE (2005) Macromodeling of weakly nonlinear MEMS devices with Taylor-series expansion and Arnoldi approach. J Microelectromech Syst 14(4):441–451

    Google Scholar 

  • Cho YH, Pisano AP, Howe RT (1994) Viscous damping model for laterally oscillating microstructures. J Microelectromech Syst 3:81–87

    Article  Google Scholar 

  • Chowdhury I, Dasgupta SP (2003) Computation of Rayleigh damping coefficients for large systems. Electron J Geotech Eng 8:1–11

    Google Scholar 

  • Clark JV, Pister KSJ (2007) Modeling, simulation, and verification of an advanced micromirror using SUGAR. J Microelectromech Syst 16(6):1524–1536

    Article  Google Scholar 

  • Coventor Inc coventorWare ARCHITECT 2008

    Google Scholar 

  • Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18(1):140–158

    Article  MathSciNet  MATH  Google Scholar 

  • Eid R, Salimbahrami B, Lohmann B, Rudnyi EB, Korvink JG (2007) Parametric order reduction of proportionally damped second-order systems. Sens Mater 19(3):149–164

    Google Scholar 

  • Freund RW (2000) Krylov-subspace methods for reduced-order modeling in circuit simulation. J Comput Appl Math 123(1–2):395–421

    Article  MathSciNet  MATH  Google Scholar 

  • Guo D, Chu FL (2001) The influence of rotation on vibration of a thick cylindrical shell. J Sound Vib 242(3):487–505

    Article  Google Scholar 

  • He J, Sætrom J, Durlofsky LJ (2011) Enhanced linearized reduced-order models for subsurface flow simulation. J Comput Phys 230(23):8313–8341

    Article  MathSciNet  MATH  Google Scholar 

  • Jing Q, Mukherjee T, Fedder GK (2002) Large-deflection beam model for schematic behavioral simulation in NODAS. Model Simul Microsyst:136–139

    Google Scholar 

  • Liu G, Wang A, Jiang T, Jiao J, Jang JB (2008) Effects of environmental temperature on the performance of a micromachined gyroscope. Microsyst Technol 14:199–204

    Article  Google Scholar 

  • Liu Y, Yuan W, Chang H (2014a) A global maximum error controller-based method for linearization point selection in trajectory piecewise-linear model order reduction. IEEE Trans Comput Aided Des Integr Circuits Syst 33(7):1100–1104

    Article  Google Scholar 

  • Liu Y, Yuan W, Chang H, Ma B (2014b) Compact thermoelectric coupled models of micromachined thermal sensors using trajectory piecewise-linear model order reduction. Microsyst Technol 20(1):73–82

    Article  Google Scholar 

  • Ma BH, Zhou BQ, Deng JJ, Yuan WZ (2008) On heat insulation of micro thermal sensor using FEA. Chin J Sensors Actuators 21(6):933–937

    Google Scholar 

  • Ma BH, Ren JZ, Yuan WZ (2010) Flexible thermal sensor array on PI film substrate for underwater applications. In: Proceedings of 23rd IEEE international conference MEMS, pp 679–682

    Google Scholar 

  • Mukherjee T, Fedder GK, Ramaswamy D, White J (2000) Emerging simulation approaches for micromachined devices. IEEE Trans Comput Aided Des Integr Circuits Syst 19(12):1572–1589

    Article  Google Scholar 

  • Nahvi SA, Nabi M, Janardhanan S (2012) Trajectory based methods for nonlinear mor: review and perspectives. In: 2012 I.E. ISPCC, pp 1–6

    Google Scholar 

  • Nayfeh H, Younis MI, Abdel-Rahman EM (2005) Macromodels for MEMS applications. Nonlinear Dyn 41(1–3):211–236

    Article  MATH  Google Scholar 

  • Painter CC, Shkel AM (2001) Structural and thermal analysis of a mems angular gyroscope. Proc SPIE Int Soc Opt Eng 4334:86–94

    Google Scholar 

  • Painter CC, Shkel AM (2003) Structural and thermal modeling of a z-axis rate integrating gyroscope. J Micromech Microeng 13:229–237

    Article  Google Scholar 

  • Reitz S et al (2003) System level modeling of microsystems using order reduction methods. Analog Integr Circ Sig Process 37(1):7–16

    Article  Google Scholar 

  • Rewienski M, White J (2003) A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans CAD 22(2):155–170

    Article  Google Scholar 

  • Rudnyi EB, Feng LH, Salleras M, Marco S, Korvink JG (2005) Error indicator to automatically generate dynamic compact parametric thermal models. In: THERMINIC 2005, 11th international workshop on thermal investigations of ICs and systems, Belgirate, pp 139–145

    Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Schrag G, Wachutka G (2002) Physically based modeling of squeeze-film damping by mixed-level system simulation. Sensors Actuators A Phys 97–98:193–200

    Article  Google Scholar 

  • Schrag G, Wachutka G (2004) Accurate system-level damping model for highly perforated micromechanical devices. Sensors Actuators A Phys 111(2–3):222–228

    Article  Google Scholar 

  • Senturia SD (2001) Microsystem design. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Simoncini V, Szyld DB (2007) Recent computational developments in Krylov subspace methods for linear systems. Numer Linear Algebra 14(1):1–59

    Article  MathSciNet  MATH  Google Scholar 

  • Striebel M, Rommes J (2011) Model order reduction of nonlinear systems in circuit simulation: status and applications. Lecture Notes in Electrical Engineering 74(2):289–301. In: Benner P, Hinze M, ter Maten EJW (eds)

    Article  MathSciNet  Google Scholar 

  • Tilmans H (1996) Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. J Micromech Microeng 6:157–176

    Article  Google Scholar 

  • Tiwary SK, Rutenbar RA (2005) Scalable trajectory methods for on-demand analog macromodel extraction. In: Proceedings of the 42nd annual design automation conference, pp 403–408

    Google Scholar 

  • Vandemeer JE 1998 Nodal design of actuators and sensors (NODAS). M.S. Thesis, Carnegie Mellon University

    Google Scholar 

  • Vasilyev D, Rewienski M, White J (2003) A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS. In: Proceedings of the 40th design automation conference, pp 490–495

    Google Scholar 

  • Veijola T, Kuisma H et al (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sensors Actuators A Phys 48(3): 239–248

    Google Scholar 

  • Veijola T, Turowski M (2001) Compact damping models for laterally moving microstructures with gas-rarefaction effects. J Microelectromech Syst 10:263–273

    Article  Google Scholar 

  • Voss T, Verhoeven A, Bechtold T, ter Maten EJW (2008) Model order reduction for nonlinear differential algebraic equations in circuit simulation. In: Bonilla LL, Moscoso M, Platero G, Vega JM (eds) Progress in industrial mathematics at ECMI 2006. Series mathematics in industry, vol 12. Heidelberg, Springer, pp 518–523

    Google Scholar 

  • Yang Y-JJ, Yen P-C (2004) An efficient macromodeling methodology for lateral air damping effects. J Microelectromech Syst 13(3):812–828

    Google Scholar 

  • Yang YJ, Yu CJ 2002 Technical proceedings of the 2002 international conference on modeling and simulation of microsystems, pp 178–181

    Google Scholar 

  • Zhang Y, Kamalian R, Agogino AM et al (2005) Hierarchical MEMS synthesis and optimization. In: Proceedings of 12th SPIE annual international symposium: smart structures and materials, #5763–12

    Google Scholar 

  • Zhang R, Wang W, Dounavis A, Jullien GA (2008) Passive reduced-order macromodeling algorithm for microelectromechanical systems. J Microelectromech Syst 17(3):678–687

    Article  Google Scholar 

  • Zhou N, Agogino AM (2002) Automated design synthesis for micro-electro-mechanical systems (MEMS). In: Proceedings of the ASME design automation conference, Montreal, 29 Sept–2 Oct

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Chang, H., Xie, J., Liu, Y. (2017). Behavior Modeling and Simulation of an Inertial Sensor. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics