Skip to main content

A Micromachined Silicon Resonant Pressure Sensor

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

Micromachined silicon resonant pressure sensors have been widely used in automotive industry, medical instrument, aerospace, and military fields due to their high accuracy, long-term stability, and quasi-digital output. This chapter begins with the introduction of the working principle of the resonant pressure sensors, illustrating key relationships between (1) intrinsic resonant frequency and structural parameters, (2) pressure under measurement and resonant frequency shift, and (3) device sensitivity and structural parameters. Then, two kinds of micromachined silicon resonant pressure sensors based on electromagnetic and electrostatic excitations are presented, respectively, where device design, simulation, fabrication, and packaging are discussed in details. Finally, self-temperature compensation approaches are introduced to improve the performance of the micromachined silicon resonant pressure sensors, which can therefore function in a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdolvand R, Ayazi F (2008) An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens Actuators A Phys 144(1):109–116

    Article  Google Scholar 

  • Beeby SP, Ensell G, Baker BR et al (2000) Micromachined silicon resonant stain gauges fabricated using SOI wafer technology. IEEE J MEMS 9:104–111

    Article  Google Scholar 

  • Bhardwaj JK, Ashraf H (1995) Advanced silicon etching using high-density plasmas. In: Proceedings of SPIE – the international society for optical engineering, Orlando

    Google Scholar 

  • Borenstein JT, Gerrish ND (1997) Etch selectivity of novel epitaxial layers for bulk micromachining. MRS Online Proc Lib 546

    Google Scholar 

  • Cabuz C, Shoji S, Fukatsu K et al (1994) Fabrication and packaging of a resonant infrared sensor integrated in silicon. Sens Actuators A Phys 43:92–99

    Article  Google Scholar 

  • Charavel R, Lanconte J, Raskin JP (2003) Advantages of p++ polysilicon etch stop layer versus p++ silicon. Proc SPIE Smart Sensors, Actuators and MEMS 5116:699–709

    Article  Google Scholar 

  • Chen DY (2002) Research on micromachined resonant beam pressure sensors. Dissertation, University of Chinese Academy of Sciences

    Google Scholar 

  • Chen DY, Cui DF, Xia SH et al (2005) Design and modeling of a silicon nitride beam resonant pressure sensor for temperature compensation. In: Proceedings of the 2nd IEEE international conference on information acquisition, Hong Kong

    Google Scholar 

  • Chen DY, Wu ZW, Shi XJ et al (2009) Design and modeling of an electromagnetically excited silicon nitride beam resonant pressure sensor. In: Proceedings of the 4th IEEE international conference of nano/micro engineered and molecular systems, Shenzhen

    Google Scholar 

  • Chen DY, Li YX, Liu M et al (2010a) Design and experiment of a laterally driven micromachined resonant pressure sensor for barometers. Procedia Eng 5:1490–1493

    Article  Google Scholar 

  • Chen DY, Li YX, Liu M et al (2010b) A novel laterally driven micromachined resonant pressure sensor. In: Proceedings of the 9th IEEE international conference on sensors, Hawaii

    Google Scholar 

  • Choa SH (2005) Reliability of MEMS packaging: vacuum maintenance and packaging induced stress. Microsyst Technol 11:1187–1196

    Article  Google Scholar 

  • Damjanovic D (1998) Materials for high-temperature piezoelectric transducers. Curr Opin Solid State Mater Sci 3:469–473

    Article  Google Scholar 

  • Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 7(6):530–539

    Article  Google Scholar 

  • Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:01–13

    Article  Google Scholar 

  • Greenwood JC, Satchell DW (1988) Miniature silicon resonant pressure sensor. IEE Proc D Control Theory Appl 135(5):369–372

    Article  Google Scholar 

  • Greenwood JC, Wray T (1993) High accuracy pressure measurement with a silicon resonant sensor. Sens Actuators A Phys 37:82–85

    Article  Google Scholar 

  • Guckel H (1991) Surface micromachined pressure transducers. Sens Actuators A Phys 28(28):133–146

    Article  Google Scholar 

  • Guckel H, Sniegowski JJ, Christenson TR et al (1990) The application of fine-grained, tensile polysilicon to mechanically resonant transducers. Sens Actuators A Phys 21(1–3):346–351

    Article  Google Scholar 

  • Harada K, Ikeda K, Kuwayama H et al (1996) Various applications of resonant pressure sensor chip based on 3D micromachining. Sens Actuators A Phys 73:261–266

    Article  Google Scholar 

  • Hirano T, Furuhata T, Gabriel KJ et al (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. IEEE J MEMS 1:52–59

    Article  Google Scholar 

  • Ikeda K, Kuwayama H, Kobayashi T et al (1990) Silicon pressure sensor integrates resonant strain gauge on diaphragm. Sens Actuators A Phys 21:146–150

    Article  Google Scholar 

  • Ikeda K, Kuwayama H, Kobayashi T et al (1991) Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm. Sens Actuators A Phys 23:1007–1010

    Article  Google Scholar 

  • Ji HX, Yu P, Liang XJ (2000) Research of sensor nonlinear compensation. Machinery 10:1127–1130

    Google Scholar 

  • Jiao HL, Xie B, Wang JB et al (2013) Electrostatically driven and capacitively detected differential lateral resonant pressure microsensor. Micro Nano Lett 8(10):650–653

    Article  Google Scholar 

  • Kasten K, Amelung J, Mokwa W (2000) CMOS-compatible capacitive high-temperature pressure sensors. Sens Actuators A Phys 85:147–152

    Article  Google Scholar 

  • Kinnell PK, Craddock R (2009) Advances in silicon resonant pressure transducers. Procedia Chem 1:104–107

    Article  Google Scholar 

  • Klaassen EH, Petersen K, Noworolski JM et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuators A Phys 52(1–3):132–139

    Article  Google Scholar 

  • Li YX, Chen DY, Wang JB (2011) Stress isolation used in MEMS resonant pressure sensor package. Procedia Eng 25:455–458

    Article  Google Scholar 

  • Li YX, Chen DY, Wang JB (2012) Low temperature wafer level adhesive bonding using BCB for resonant pressure sensor. Key Eng Mater 503:75–80

    Article  Google Scholar 

  • Li YX, Chen DY, Wang JB (2013) A new stress isolation method in the packaging of resonant pressure micro sensors. Sens Lett 11(2):264–269

    Article  Google Scholar 

  • Li YN, Wang JB, Luo ZY et al (2015) A resonant pressure microsensor capable of self-temperature compensation. Sensors 15(5):10048–10058

    Article  Google Scholar 

  • Liang WF, Wang XD, Liang PE (2007) Pressure sensor temperature compensation based on least squares support vector machine. Chin J Sci Instrum 12:2235–2238

    Google Scholar 

  • Longoni G, Conte A, Moraja M et al (2006) Stable and reliable Q-factor in resonant MEMS with getter film. In: Proceedings of the 44th IEEE annual international reliability physics symposium, San Jose

    Google Scholar 

  • Luo ZY, Chen DY, Wang JB (2013) A differential resonant barometric pressure sensor using SOI-MEMS technology. In: Proceedings of the 12th IEEE international conference on sensors, Baltiomore

    Google Scholar 

  • Luo ZY, Chen DY, Wang JB et al (2014a) A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors 14:24244–24257

    Article  Google Scholar 

  • Luo ZY, Chen DY, Wang JB (2014b) A SOI-MEMS based resonant barometric pressure sensor with differential output. Key Eng Mater 609(610):1033–1039

    Article  Google Scholar 

  • Luo ZY, Chen DY, Wang JB (2014c) Resonant pressure sensor with Through-glass electrical interconnect based on SOI wafer technology. In: Proceedings of IEEE NEMS, Hawaii

    Google Scholar 

  • Luo ZY, Li YN, Xie B et al (2015) A self-temperature compensating barometer with dual doubly-clamped resonators. In: Proceedings of the 18th international conference on solid-state sensors, actuators & microsystems, Anchorage

    Google Scholar 

  • Mandle J, Lefort O, Migeon A (1995) A new micromachined silicon high-accuracy pressure sensor. Sens Actuators A Phys 46:129–132

    Article  Google Scholar 

  • Marty F, Rousseau L, Saadany B et al (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36(7):673–677

    Article  Google Scholar 

  • Melamud R, Chandorkar SA, Kim B et al (2009) Temperature-insensitive composite micromechanical resonators. J MEMS 18(6):1409–1419

    Article  Google Scholar 

  • Mitchell J, Lahiji GR, Najafi K (2005) Encapsulation of vacuum sensors in a wafer level package using a gold-silicon eutectic. In: Proceedings of the 13th international conference on solid-state sensors, actuators & microsystems, Seoul

    Google Scholar 

  • Moraja M, Amiotti M (2003) Getters films at wafer level for wafer to wafer bonded MEMS. In: Proceedings of symposium on design, test, integration and packaging of MEMS/MOEMS, Mandelieu-Lanapoule

    Google Scholar 

  • O’Mahony C, Hill M, Olszewski Z et al (2009) Wafer-level thin-film encapsulation for MEMS. Microelectron 86:1311–1313

    Article  Google Scholar 

  • Otmani R, Benmoussa N, Benyoucef B (2011) The thermal drift characteristics of piezoresistive pressure sensor. Phys Procedia 21:47–52

    Article  Google Scholar 

  • Pensala T, Jaakkola A et al (2011) Temperature compensation of silicon MEMS resonators by heavy doping. In: Proceedings of the IEEE international ultrasonics symposium, Orlando

    Google Scholar 

  • Petersen K, Barth P, Poydock J et al (1988) Silicon fusion bonding for pressure sensor. In: Proceedings of the solid-state sensor and actuator workshop, Hilton Head Island

    Google Scholar 

  • Pramanik C, Islam T, Saha H (2006) Temperature compensation of piezoresistive micro-machined porous silicon pressure sensor by Ann. Microelectron Reliab 46:343–351

    Article  Google Scholar 

  • Santo ZM, Mozek M, Macek S et al (2010) An LTCC-based capacitive pressure sensor with a digital output. Inf MIDEM 40:74–81

    Google Scholar 

  • Schulz M, Sauerwald J, Richter D et al (2009) Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Ionics 15:157–161

    Article  Google Scholar 

  • Steinsland E, Nese M, Hanneborg A et al (1995) Boron etch-stop in TMAH solutions. Sens Actuators A Phys 1(97):190–193

    Google Scholar 

  • Sun YC, Chen ZY, Wang J (2004) Normalizing the polynomial-match for a non-linear function in sensors and solid electronics. J Electron Devices 1:1–7

    Google Scholar 

  • Wang JS, Dong YG, Feng GP et al (1997) Temperature characteristics of quartz resonant force sensors and self-temperature-compensation. J Tsinghua Univ (Sci Technol) 8:12–14

    Google Scholar 

  • Wang JB, Chen DY, Xia SH et al (2008a) A novel method to eliminate the co-channel interference of micromachined diffused silicon resonant pressure sensor. In: Proceedings of the 7th IEEE international conference on sensors, Lecce

    Google Scholar 

  • Wang JB, Shi XJ, Liu L et al (2008b) A novel resonant pressure sensor with boron diffused silicon resonator. In: Proceedings of SPIE international conference on optical instrument and technology-MEMS/NEMS technology and applications, Beijing

    Google Scholar 

  • Wang JB, Chen DY, Liu L et al (2009) A micromachined resonant pressure sensor with DETFs resonator and differential structure. In: Proceedings of the 8th IEEE international conference on sensors, Chirstchurch

    Google Scholar 

  • Wang JC, Xia XY et al (2013) Piezoresistive pressure sensor with dual-unit configuration for on-chip self-compensation and suppression of temperature drift. In: Proceedings of the international conference on solid-state sensors, actuators & microsystems, Barcelona

    Google Scholar 

  • Welham CJ, Greenwood J, Bertioli MM (1999) A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sens Actuators A Phys 76(1–3):298–304

    Article  Google Scholar 

  • Wen H, Daruwalla A, Mirjalili R et al (2016) HARPSS-fabricated nano-gap comb-drive for efficient linear actuation of high frequency BAW resonators. In: Proceedings of IEEE MEMS, Shanghai

    Google Scholar 

  • Xie B, Jiao HL, Wang JB et al (2013) An electrostatically-driven and capacitively-sensed differential lateral resonant pressure microsensor. In: Proceedings of the 8th annual IEEE international conference on nano/micro engineered and molecular systems, Suzhou

    Google Scholar 

  • Xie B, Xing Y, Wang Y et al (2015a) A lateral differential resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. Sensors 15(9):24257–24268

    Article  Google Scholar 

  • Xie B, Xing Y, Wang Y et al (2015b) Vacuum-packaged resonant pressure sensor with dual resonators for high sensitivity and linearity. Process Eng 120:194–199

    Google Scholar 

  • Yang L, Su Y, Qiu AP et al (2013) Self-temperature compensation for high quality factor micro-machined gyroscope. Opt Precis Eng 11:2870–2876

    Article  Google Scholar 

  • Yoneoka S, Salvia JC, Bahl G et al (2010) Active electrostatic compensation of micromechanical resonators under random vibrations. IEEE J MEMS 19(5):1270–1272

    Article  Google Scholar 

  • Zhu L, Xie B, Xing YH et al (2016) A resonant pressure sensor capable of temperature compensation with least squares support vector machine. Procedia Eng 168:1731–1734

    Article  Google Scholar 

  • Zook JD, Burns DW, Guckel H et al (1991) Resonant microbeam strain transducers. In: Proceedings of the 6th international conference on solid-state sensors and actuators, San Francisco

    Google Scholar 

Download references

Acknowledgments

We thank the National Basic Research Program of China (973 Program, Grant No. 2014CB744600), the National Natural Science Foundation of China (Grant Nos. 61431019, 61372054 and 61671430), the Beijing Municipal Natural Science Foundation (Grant No. 4152056), the Beijing Municipal Science and Technology Commission (Grant No. D11110100160000), and the Beijing NOVA Program of Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Wang, J., Chen, D., Xie, B., Chen, J., Zhu, L., Lu, Y. (2017). A Micromachined Silicon Resonant Pressure Sensor. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics