Living Edition
| Editors: Jinbo Hu, Teruo Umemoto

Fluorination of Alkenes and Alkynes for Preparing Alkyl Fluorides

  • Guosheng Liu
Living reference work entry
DOI: https://doi.org/10.1007/978-981-10-1855-8_5-1


Fluorination-based difunctionalization is a useful approach for the synthesis of organofluorides. With these methods, not only fluorine but also an additional functional group can be introduced into the organic molecules in one step reaction. Subsequently, the second functionality can be employed as a handle for additional transformations of the organofluorine compounds. This fluorination-based difunctionalization of alkenes provides an efficient way to alkyl fluorides, whereas the same reaction of alkynes, in most cases, affords the alkenyl fluorides, but in some cases, especially under the catalysis of gold, the alkyl fluorides are generated.

Tremendous progress has been made in fluorination-based difunctionalization of alkenes and alkynes with different fluorinating reagents, and thus the vast array of alkyl fluorides are accessible today. However, from mechanistic aspect, most of these reactions can be classified to following four types of mechanisms (Scheme 1): (a)...
This is a preview of subscription content, log in to check access.


  1. 1.
    Sanford G (2007) J Fluorine Chem 128:90CrossRefGoogle Scholar
  2. 2.
    Tius MA (1995) Tetrahedron 51: 6605CrossRefGoogle Scholar
  3. 3.
    Lal GS, Pez GP, Syvret RG (1996) Chem Rev 96:1737CrossRefGoogle Scholar
  4. 4.
    Stavber S, Pecӑn TS, Zupan M (2000) J Chem Soc Perkin Trans 2 2000:1141CrossRefGoogle Scholar
  5. 5.
    Stavber S, Pečan TS, Zupan M (2000) Tetrahedron 56:1929CrossRefGoogle Scholar
  6. 6.
    Chatalova-Sazepin C, Hemelaere R, Paquin J-F, Sammis GM (2015) Synthesis 47:2554CrossRefGoogle Scholar
  7. 7.
    Merritt RF, Johnson FA (1966) J Org Chem 31:1859CrossRefGoogle Scholar
  8. 8.
    Rozen S, Brand M, (1986) J Org Chem 51:3607CrossRefGoogle Scholar
  9. 9.
    Vints I, Rozen S (2014) J Org Chem 79:3607CrossRefGoogle Scholar
  10. 10.
    Vints I, Rozen S (2016) Tetrahedron 72:632CrossRefGoogle Scholar
  11. 11.
    Zupan M, Pollak A (1976) J Org Chem 41:4002CrossRefGoogle Scholar
  12. 12.
    Sket B, Zupan M (1977) J Chem Soc Perkin Trans 1 1977:2169CrossRefGoogle Scholar
  13. 13.
    Tamura M, Takagi T, Quan H-d, Sekiya A (1999) J Fluorine Chem 98:163CrossRefGoogle Scholar
  14. 14.
    Stavber S, Sotler T, Zupan M (1994) J Org Chem 59:5891CrossRefGoogle Scholar
  15. 15.
    Zupan M, Pollak A (1977) J Org Chem 42:1559CrossRefGoogle Scholar
  16. 16.
    Shellhamer DF, Curtis CM, Dunham RH, Hollingsworth DR, Ragains ML, Richardson RE, Heasley VL (1985) J Org Chem 50:2751CrossRefGoogle Scholar
  17. 17.
    Shellhamer DF, Carter SL, Dunham RH, Graham SN, Spitsbergen MP, Heasley VL (1989) J Chem Soc Perkin Trans II 1989:159CrossRefGoogle Scholar
  18. 18.
    Druelinger ML, Shellhamer DF, Chapman RD, Shackelford SA, Riner ME, Carter SL, Callahan RP, Youngstrom CR (1997) J Chem Soc Perkin Trans II 1997:787CrossRefGoogle Scholar
  19. 19.
    Lal GS (1993) J Org Chem 58:2791CrossRefGoogle Scholar
  20. 20.
    Yadav JS, Reddy BVS, Chary DN, Chandrakanth D (2009)Tetrahedron Lett 50:1136CrossRefGoogle Scholar
  21. 21.
    Kumar A, Singh TV, Venugopalan P (2013) J Fluorine Chem 150:72CrossRefGoogle Scholar
  22. 22.
    Stavber S, Pecӑn TS, Papež M, Zupan M (1996) Chem Commun 1996:2247CrossRefGoogle Scholar
  23. 23.
    Stavber S, Zupan M, Poss AJ, Shia GA (1995) Tetrahedron Lett 36:6769CrossRefGoogle Scholar
  24. 24.
    Stavber G, Zupan M, Jereb M, Stavber S (2004) Org Lett 6:4973CrossRefGoogle Scholar
  25. 25.
    Yang Q, Mao L-L, Yang B, Yang S-D (2014) Org Lett 16:3460CrossRefGoogle Scholar
  26. 26.
    Parmar D, Rueping M (2014) Chem Commun 50:13928CrossRefGoogle Scholar
  27. 27.
    Lourie LF, Serguchev YA, Ponomarenko MV, Rusanov EB, Vovk MV, Ignat’ev NV (2013) Tetrahedron 69:833CrossRefGoogle Scholar
  28. 28.
    Parmar D, Maji MS, Rueping M (2014) Chem Eur J 20:83CrossRefGoogle Scholar
  29. 29.
    Zhao J-F, Duan X-H, Yang H, Guo L-N (2015) J Org Chem 80:11149CrossRefGoogle Scholar
  30. 30.
    Shibata N, Tarui T, Doi Y, Kirk KL (2001) Angew Chem Int Ed 40:4461CrossRefGoogle Scholar
  31. 31.
    Wilkinson SC, Lozano O, Schuler M, Pacheco M, Salmon R, Gouverneur V (2009) Angew Chem Int Ed 48:7083CrossRefGoogle Scholar
  32. 32.
    Combettes LE, Lozano O, Gouverneur V (2012) J Fluorine Chem 143:167CrossRefGoogle Scholar
  33. 33.
    Wolstenhulme JR, Rosenqvist J, Lozano O, Ilupeju J, Wurz N, Engle KM, Pidgeon GW, Moore PR, Sandford G, Gouverneur V (2013) Angew Chem Int Ed 52:9796CrossRefGoogle Scholar
  34. 34.
    Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M (2008) Angew Chem Int Ed 47:4157CrossRefGoogle Scholar
  35. 35.
    Lozano O, Blessley G, del Campo TM, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V (2011) Angew Chem Int Ed 50:8105CrossRefGoogle Scholar
  36. 36.
    Rauniyar V, Lackner AD, Hamilton GL, Toste FD (2011) Science 334:1681CrossRefGoogle Scholar
  37. 37.
    Honjo T, Phipps RJ, Rauniyar V, Toste FD (2012) Angew Chem Int Ed 51:9684CrossRefGoogle Scholar
  38. 38.
    Shunatona HP, Früh N, Wang Y-M, Rauniyar V, Toste FD (2013) Angew Chem Int Ed 52:7724CrossRefGoogle Scholar
  39. 39.
    Wu J, Wang Y-M, Drljevic A, Rauniyar V, Phipps RJ, Toste FD (2013) Proc Nat Acad Sci USA 110:13729CrossRefGoogle Scholar
  40. 40.
    Zi W, Wang Y-M, Toste FD (2014) J Am Chem Soc 136:12864CrossRefGoogle Scholar
  41. 41.
    Romanov-Michailidis F, Guénée L, Alexakis A (2013) Angew Chem Int Ed 52:9266CrossRefGoogle Scholar
  42. 42.
    Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y (2015) J Am Chem Soc 137:10132CrossRefGoogle Scholar
  43. 43.
    Olah GA, Nojima M, Kerekes I (1973) Synthesis 1973:779CrossRefGoogle Scholar
  44. 44.
    Olah GA, Welch JT, Vankar YD, Nojima M, Kerekes I, Olah JA (1979) J Org Chem 44:3872CrossRefGoogle Scholar
  45. 45.
    Kobayashi S, Sawaguchi M. Ayuba S, Fukuhara T, Hara S (2001) Synlett 2001:1938CrossRefGoogle Scholar
  46. 46.
    Kuroboshi M, Hiyama T (1991) Tetrahedron Lett 32:1215CrossRefGoogle Scholar
  47. 47.
    Barluenga J. Campos PJ, González JM, Suárez JL (1991) J Org Chem 56:2234CrossRefGoogle Scholar
  48. 48.
    Carpenter W (1966) J Org Chem 31:2688CrossRefGoogle Scholar
  49. 49.
    Zupan M, Pollak A (1975) J Chem Soc Chem Commun 1975:715CrossRefGoogle Scholar
  50. 50.
    Patrick TB, Scheibel JJ, Hall WE, Lee YH (1980) J Org Chem 45:4492CrossRefGoogle Scholar
  51. 51.
    Hara S, Nakahigashi J, Ishi-i K, Sawaguchi M, Sakai H, Fukuhara T, Yoneda N (1998) Synlett 1998:495CrossRefGoogle Scholar
  52. 52.
    Sawaguchi M, Hara S, Yoneda N (2000) J Fluorine Chem 105:313CrossRefGoogle Scholar
  53. 53.
    Sawaguchi M, Hara S, Fukuhara T, Yoneda N (2000) J Fluorine Chem 104:277CrossRefGoogle Scholar
  54. 54.
    Kong W, Guo Q, Xu Z, Wang G, Jiang X, Wang R (2015) Org Lett 17:3686CrossRefGoogle Scholar
  55. 55.
    Wang Q, Zhong W, Wei X, Ning M, Meng X, Li Z (2012) Org Biomol Chem 10:8566CrossRefGoogle Scholar
  56. 56.
    Cui J, Jia Q, Feng R-Z, Liu S-S, He T, Zhang C (2014) Org Lett 16:1442CrossRefGoogle Scholar
  57. 57.
    Liu G-Q, Li Y-M (2014), J Org Chem 79:10094CrossRefGoogle Scholar
  58. 58.
    Chen H, Kaga A, Chiba S (2016) Org Biomol Chem 14:5481CrossRefGoogle Scholar
  59. 59.
    Suzuki S, Kamo T, Fukushi K, Hiramatsu T, Tokunaga E, Dohi T, Kita Y, Shibata N (2014) Chem Sci 5:2754CrossRefGoogle Scholar
  60. 60.
    Banik SM, Medley JM, Jacobsen EN (2016) J Am Chem Soc 138:5000CrossRefGoogle Scholar
  61. 61.
    Molnár IG, Gilmour R (2016) J Am Chem Soc 138:5004CrossRefGoogle Scholar
  62. 62.
    Kong W, Feige P, de Haro T, Nevado C (2013) Angew Chem Int Ed 52:2469CrossRefGoogle Scholar
  63. 63.
    Banik SM, Medley JM, Jacobsen EN (2016) Science 353:51CrossRefGoogle Scholar
  64. 64.
    Woerly EM, Banik SM, Jacobsen EN (2016) J Am Chem Soc 138:13858CrossRefGoogle Scholar
  65. 65.
    Yuan W, Szabo KJ (2015) Angew Chem Int Ed 54:8533CrossRefGoogle Scholar
  66. 66.
    Conte P, Panunzi B, Tingoli M (2006) Tetrahedron Lett 47:273CrossRefGoogle Scholar
  67. 67.
    Ilchenko NO, Cortés MA, Szabó KJ (2016) ACS Catal 6:447CrossRefGoogle Scholar
  68. 68.
    Geary GC, Hope EG, Stuart AM (2015) Angew Chem Int Ed 54:14911CrossRefGoogle Scholar
  69. 69.
    Yang B, Chansaenpak K, Wu H, Zhu L, Wang M, Li Z, Lu H (2017) Chem Commun 53:3497CrossRefGoogle Scholar
  70. 70.
    Ulmer A, Brunner C, Arnold AM, Pöthig A, Gulder T (2016) Chem Eur J 22:3660CrossRefGoogle Scholar
  71. 71.
    Ilchenko NO, Tasch BOA, Szabó KJ (2014) Angew Chem Int Ed 53:12897CrossRefGoogle Scholar
  72. 72.
    Baker TJ, Boger DL (2012) J Am Chem Soc 134:13588CrossRefGoogle Scholar
  73. 73.
    Shigehisa H, Nishi E, Fujisawa M, Hiroya K (2013) Org Lett 15:5158CrossRefGoogle Scholar
  74. 74.
    Li Z, Song L, Li C (2013) J Am Chem Soc 135:4640CrossRefGoogle Scholar
  75. 75.
    Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C (2013) J Am Chem Soc 135:14082CrossRefGoogle Scholar
  76. 76.
    Li Z, Zhang C, Zhu L, Liu C, Li C (2014) Org Chem Front 1:100CrossRefGoogle Scholar
  77. 77.
    Zhu L, Chen H, Wang Z, Li C (2014) Org Chem Front 1:1299CrossRefGoogle Scholar
  78. 78.
    Wang H, Guo L-N, Duan X-H (2014) Chem Commun 50: 7382CrossRefGoogle Scholar
  79. 79.
    Kindt S, Heinrich MR (2014) Chem Eur J 20: 15344CrossRefGoogle Scholar
  80. 80.
    Guo R, Yang H, Tang P (2015) Chem Commun 51:8829CrossRefGoogle Scholar
  81. 81.
    Zhang H, Song Y, Zhao J, Zhang J, Zhang Q (2014) Angew Chem Int Ed 53:11079CrossRefGoogle Scholar
  82. 82.
    Saavedra-Olavarría J, Arteaga GC, López JJ, Pérez EG (2015) Chem Commun 51:3379CrossRefGoogle Scholar
  83. 83.
    Yuan Z, Wang H-y, Mu X, Chen P, Guo Y-l, Liu G (2015) J Am Chem Soc 137:2468CrossRefGoogle Scholar
  84. 84.
    Lu D-F, Liu G-S, Zhu C-L, Yuan B, Xu H (2014) Org Lett 16:2912CrossRefGoogle Scholar
  85. 85.
    Lu D-F, Zhu C-L, Sears JD, Xu H (2016) J Am Chem Soc 138:11360CrossRefGoogle Scholar
  86. 86.
    Wu T, Yin G, Liu G (2009) J Am Chem Soc 131:16354CrossRefGoogle Scholar
  87. 87.
    Cheng J, Chen P, Liu G (2015) Chin J Catal 36:40CrossRefGoogle Scholar
  88. 88.
    Wu T, Cheng J, Chen P, Liu G (2013) Chem Commun 49:8707CrossRefGoogle Scholar
  89. 89.
    Zhu H, Liu G (2012) Acta Chim Sinica 70:2404CrossRefGoogle Scholar
  90. 90.
    Qiu S, Xu T, Zhou J, Guo Y, Liu G (2010) J Am Chem Soc 132:2856CrossRefGoogle Scholar
  91. 91.
    Xu T, Qiu S, Liu G (2011) Chin J Chem 29:2785CrossRefGoogle Scholar
  92. 92.
    Peng H, Yuan Z, Wang H-y, Guo Y-l, Liu G (2013) Chem Sci 4:3172CrossRefGoogle Scholar
  93. 93.
    Yuan Z, Peng H, Liu G(2013) Chin J Chem 31:908CrossRefGoogle Scholar
  94. 94.
    Emer E, Pfeifer L, Brown JM, Gouverneur V (2014) Angew Chem Int Ed 53:4181CrossRefGoogle Scholar
  95. 95.
    Talbot EPA, Fernandes TA, McKenna JM, Toste FD (2014) J Am Chem Soc 136:4101CrossRefGoogle Scholar
  96. 96.
    He Y, Yang Z, Thornbury RT, Toste FD (2015) J Am Chem Soc 137:12207CrossRefGoogle Scholar
  97. 97.
    Zhao S-B, Becker JJ, Gagné MR (2011) Organometallics 30:3926CrossRefGoogle Scholar
  98. 98.
    Cochrane NA, Nguyen H, Gagne MR (2013) J Am Chem Soc 135:628CrossRefGoogle Scholar
  99. 99.
    de Haroa T, Nevadoa C (2010) Adv Synth Catal 352:2767CrossRefGoogle Scholar
  100. 100.
    Li S, Li Z, Yuan Y, Li Y, Zhang L, Wu Y (2013) Chem Eur J 19:1496CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina