Skip to main content

Spectrum Sensing, Database, and Its Hybrid

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

The rising popularity of wireless services resulting in spectrum shortage has motivated dynamic spectrum sharing to facilitate efficient usage of the underutilized spectrum. Cognitive radio has emerged as one of the most promising candidate solutions to improve spectrum utilization, by allowing secondary users (SUs) to opportunistically access the temporarily unused spectrum, without introducing harmful interference to primary users (PUs). A crucial requirement in cognitive radio networks (CRNs) is wideband spectrum sensing, in which SUs should detect spectral opportunities across a wide frequency range. However, wideband spectrum sensing could lead to unaffordable high sampling rates at energy-constrained SUs. Sub-Nyquist sampling was developed to overcome this issue by exploiting the sparse property of the wideband signals. Additionally, to relax the sensing requirements, hybrid framework that combines the advantages of both geo-location database and spectrum sensing is explored. The experimental results show that the hybrid schemes can achieve improved detection performance with reduced hardware and computation complexity in comparison with the sensing and database only approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arfken GB, Weber HJ, Harris FE (2001) Mathematical methods for physicists, 7th edn. Academic Press, San Diego

    MATH  Google Scholar 

  2. Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  Google Scholar 

  3. Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  4. Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710

    Article  Google Scholar 

  5. Eldar YC, Kuppinger P, Bolcskei H (2010) Block-Sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process 58(6):3042–3054

    Article  MathSciNet  Google Scholar 

  6. Fenton L (1960) The sum of log-normal probability distributions in scatter transmission systems. IRE Trans Commun Syst 8(1):57–67

    Article  Google Scholar 

  7. Forney G (1972) Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans Inf Theory 18(3):363–378

    Article  MathSciNet  Google Scholar 

  8. Feng P, Bresler Y (1996) Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Process (ICASSP), Atlanta, vol 3, pp 1688–1691

    Google Scholar 

  9. Gao Y, Qin Z, Feng Z, Zhang Q, Holland O, Dohler M (2016) Scalable and reliable IoT Enabled By Dynamic Spectrum Management for M2M in LTE-A. IEEE Internet Things J 3(6): 1135–1145

    Article  Google Scholar 

  10. Hassanieh H, Shi L, Abari O, Hamed E, Katabi D (2014) GHz-wide sensing and decoding using the sparse Fourier transform. In: Proceedings of IEEE International Conference on Computer Communication (INFOCOM), Toronto, pp 2256–2264

    Google Scholar 

  11. Holland O, Ping S, Gao Y, Qin Z, Aijaz A, Chareau J, Chawdhry P, Kokkinen H (2015) To white space or not to white space: that is the trial within the ofcom TV white spaces pilot. In: Proceedings of IEEE International Conference on Dynamic Spectrum Access Network (DYSPAN), Stockholm, pp 11–22

    Google Scholar 

  12. IEEE Standard for Wireless Regional Area Networks (2011) Part 22: Cognitive Wireless RAN MAC & PHY Specifications: Policies and Procedures for Operation in the TV Bands. IEEE Std. 802.22–2011

    Google Scholar 

  13. Kolodzy P, Avoidance I (2002) Spectrum policy task force. Federal Communications Commission, Washington, DC, Report of ET Docket, no. 02–135

    Google Scholar 

  14. Landau HJ (1967) Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math 117(1):37–52

    Article  MathSciNet  Google Scholar 

  15. Liang Y-C, Zeng Y, Peh EC, Hoang AT (2008) Sensing-Throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337

    Article  Google Scholar 

  16. Louwsma SM, van Tuijl AJM, Vertregt M, Nauta B (2008) A 1.35 GS/s, 10 b, 175 mW Time-interleaved AD converter in 0.13 m CMOS. J Solid-State Circuits 43(4): 778–786

    Article  Google Scholar 

  17. Ma Y, Gao Y, Liang Y-C, Cui S (2016) Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks. IEEE J Sel Areas Commun 34(10): 2750–2762

    Article  Google Scholar 

  18. Mishali M, Eldar YC (2009) Blind multiband signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process 57(3):993–1009

    Article  MathSciNet  Google Scholar 

  19. Mishali M, Eldar YC (2010) From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Signal Process 4(2):375–391

    Article  Google Scholar 

  20. Mitola J, Maguire G JR (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  21. Nielson B, Cox DR (1989) Asymptotic techniques for use in statistics, 1st edn. Chapman and Hall/CRC, London/New York

    Google Scholar 

  22. Office of Communications (2009) Digital dividend: cognitive access. [Online]. Available: http://stakeholders.ofcom.org.uk/binaries/consultations/cognitive/statement/statement.pdf

  23. Office of Communications (2010) Implementing Geolocation. [Online]. Available: https://www.ofcom.org.uk/data/assets/pdf_file/0035/46889/statement.pdf

  24. Office of Communications (2015) Implementing TV White Spaces. [Online]. Available: http://stakeholders.ofcom.org.uk/binaries/consultations/white-space-coexistence/statement/tvws-statement.pdf

  25. Paisana F, Marchetti N, DaSilva L (2014) Radar, TV and cellular bands: which spectrum access techniques for which bands? IEEE Commun Surv Tutorials 16(3):1193–1220. Third Quarter

    Google Scholar 

  26. Pei Y, Liang Y-C, Teh KC, Li KH (2011) Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order. IEEE J Sel Areas Commun 29(8):1648–1659

    Article  Google Scholar 

  27. Petrini V, Karimi H (2012) TV white space databases: algorithms for the calculation of maximum permitted radiated power levels. In: IEEE international symposium on dynamic spectrum access networks (DYSPAN), Bellevue, pp 552–560

    Google Scholar 

  28. Poulton K, Neff R, Setterberg B, Wuppermann B, Kopley T, Jewett R, Pernillo J, Tan C, Montijo A (2003) A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 m CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference, Digest of Technical Papers, vol 1, pp 318–496

    Google Scholar 

  29. Qin Z, Gao Y, Parini CG (2016) Data-assisted low complexity compressive spectrum sensing on real-time signals under sub-nyquist rate. IEEE Trans Wireless Commun 15(2):1174–1185

    Article  Google Scholar 

  30. Qin Z, Gao Y, Plumbley M, Parini C (2016) Wideband spectrum sensing on real-time signals at sub-nyquist sampling rates in single and cooperative multiple nodes. IEEE Trans Signal Process 64(12):3106–3117

    Article  MathSciNet  Google Scholar 

  31. Quan Z, Cui S, Sayed AH, Poor HV (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans Signal Process 57(3):1128–1140

    Article  MathSciNet  Google Scholar 

  32. Quinlan A, Barbot J-P, Larzabal P, Haardt M (2006) Model order selection for short data: an exponential fitting test (EFT). EURASIP J Adv Signal Process 2007:Art. ID 71953

    Google Scholar 

  33. Ribeiro J, Ribeiro J, Rodriguez J, Dionisio R, Esteves H, Duarte P, Marques P (2012) Testbed for combination of local sensing with geolocation database in real environments. IEEE Wirel Commun 19(4):59–66

    Article  Google Scholar 

  34. Schwartz SC, Yeh Y-S (1982) On the distribution function and moments of power sums with log-normal components. Bell Syst Tech J 61(7):1441–1462

    Article  Google Scholar 

  35. Sun H, Nallanathan A, Wang C-X, Chen Y (2013) Wideband spectrum sensing for cognitive radio network: a survey. IEEE Trans Wireless Commun 20(2):74–81

    Article  Google Scholar 

  36. Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Sign Proces 2(1): 4–17

    Article  Google Scholar 

  37. Tani A, Fantacci R (2010) A low-complexity cyclostationary-based spectrum sensing for UWB and WiMAX coexistence With noise uncertainty. IEEE Trans Veh Technol 59(6):2940–2950

    Article  Google Scholar 

  38. Tian Z, Giannakis GB (2006) A wavelet approach to wideband spectrum sensing for cognitive radios. In: Proceedings of International Conference on Cognitive Radio Oriented Wireless Network and Commun (CROWNCOM), Mykonos Island, pp 1–5

    Google Scholar 

  39. Tian Z, Giannakis GB (2007) Compressed sensing for wideband cognitive radios. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Process (ICASSP), Honolulu, vol 4, pp 1357–1360

    Google Scholar 

  40. Tropp JA, Gilbert AC, Strauss MJ (2005) Simultaneous sparse approximation via greedy pursuit. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Process (ICASSP), Philadelphia, vol 5, pp. v/721–v/724

    Google Scholar 

  41. Tropp JA, Laska JN, Duarte MF, Romberg JK, Baraniuk RG (2010) Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory 56(1):520–544

    Article  MathSciNet  Google Scholar 

  42. Treichler J, Davenport M, Baraniuk R (2009) Application of compressive sensing to the design of wideband signal acquisition receivers. In: US/Australia Joint Work. Defense Apps. of Signal Processing (DASP), Lihue, vol 5

    Google Scholar 

  43. UK Office of Communications (Ofcom) (2013) TV white spaces-approach to coexistence, p 26 [Online]. Available: http://stakeholders.ofcom.org.uk/consultations/white-space-coexistence/

  44. UK Television Stations (UHF Digital System). [Online]. Available: http://www.wolfbane.com/ukdtt.htm

  45. Vallet P, Mestre X, Loubaton P (2015) Performance analysis of an improved MUSIC DoA estimator. IEEE Trans Signal Process 63(23):6407–6422

    Article  MathSciNet  Google Scholar 

  46. Venkataramani R, Bresler Y (2001) Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. IEEE Trans Signal Process 49(10):2301–2313

    Article  Google Scholar 

  47. Wang N, Gao Y, Evans B (2015) Database-augmented spectrum sensing algorithm for cognitive radio. In: Proceedings of IEEE International Conference on Communication (ICC), London

    Google Scholar 

  48. Wang N, Gao Y, Zhang X (2013) Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Commun Lett 17(9):1838–1841

    Article  Google Scholar 

  49. Wang N, Gao Y, Chen Y, Bodanese E, Cuthbert L (2011) A power control algorithm for TV white space cognitive radio system. In: IET international conference on communication technology and application (ICCTA), London, pp 546–550

    Google Scholar 

  50. Yu R, Zhang Y, Yi L, Xie S, Song L, Guizani M (2012) Secondary users cooperation in cognitive radio networks: balancing sensing accuracy and efficiency. IEEE Wireless Commun 19(2):30–37

    Article  Google Scholar 

  51. Zeng Y, Liang Y-C (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans Commun 57(6):1784–1793

    Article  Google Scholar 

  52. Zhang Z, Han Z, Li H, Yang D, Pei C (2011) Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Trans Wireless Commun 10(9):3020–3031

    Article  Google Scholar 

  53. Zhang X, Ma Y, Gao Y (2016, to appear) Adaptively regularized compressive spectrum sensing from real-time signals to real-time processing. In: Proceedings of IEEE Global Communication Conference (GLOBECOM), Washington, DC

    Google Scholar 

Further Reading

  1. Digham F, Alouini M-S, Simon MK (2003) On the energy detection of unknown signals over fading channels. In: IEEE International Conference on Communications (ICC), Anchorage, pp 3575–3579

    Google Scholar 

  2. Ye Z, Memik G, Grosspietsch J (2008) Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In: IEEE Wireless Communications and Networking Conference (WCNC), Las Vegas, pp 711–716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gao, Y., Ma, Y. (2019). Spectrum Sensing, Database, and Its Hybrid. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_8

Download citation

Publish with us

Policies and ethics