Skip to main content

Spectrum Sensing Using Markovian Models

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

Markovian models, as well as other statistical models, have been applied in the context of cognitive radio communications to characterize user activity in a given spectrum band and to develop algorithms for temporal spectrum sensing. In this chapter, we discuss spectrum sensing based on Markovian models. We provide an overview of the related literature and then discuss the application of discrete-time Markov chain models to spectrum sensing, in particular the hidden bivariate Markov chain. We focus on the modeling of cognitive radio channels using Markov chains, spectrum detection, and parameter estimation. We then discuss various spectrum sensing scenarios in which the Markovian models are used. Finally, we discuss open problems and topics for further research related to spectrum sensing using Markovian models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbar IA, Tranter WH (2007) Dynamic spectrum allocation in cognitive radio using hidden Markov models: poisson distributed case. In: Proceedings 2007 IEEE SoutheastCon, pp 196–201

    Google Scholar 

  2. Albert A (1962) Estimating the infinitesimal generator of a continuous time, finite state Markov process. Ann Math Stat 23(2):727–753

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagheri S, Scaglione A (2015) The restless multi-armed bandit formulation of the cognitive compressive sensing problem. IEEE Trans Signal Process 63(5):1183–1198

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball FG, Rice JA (1992) Stochastic models for ion channels: introduction and bibliography. Math Biosci 112:189–206

    Article  MATH  Google Scholar 

  5. Bertsekas DP, Tsitsiklis JN (2008) Introduction to probability, 2nd edn. Athena Scientific, Belmont

    Google Scholar 

  6. Bruno JM, Mark BL (2015) A recursive algorithm for joint time-frequency wideband spectrum sensing. In: 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp 235–240

    Google Scholar 

  7. Bruno JM, Mark BL, Tian Z (2016) An edge detection approach to wideband temporal spectrum sensing. In: IEEE Global Communications Conference (GLOBECOM), pp 1–6

    Google Scholar 

  8. Bruno JM, Mark BL, Ephraim Y, Chen C-H (2017) An edge detection approach to wideband temporal spectrum sensing. In: IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6

    Google Scholar 

  9. Cabric D, Mishra S, Brodersen R (2004) Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol 1, pp 772–776

    Google Scholar 

  10. Çinlar E (1975) Markov renewal theory: a survey. Manage Sci 21(7):727–752

    Article  MathSciNet  MATH  Google Scholar 

  11. Çinlar E (2013) Introduction to stochastic processes. Dover Publications, Mineola/New York. Reprint of 1975 edition published by Prentice-Hall

    Google Scholar 

  12. Chen CH, Lee LH (2010) Stochastic simulation optimization: an optimal computing budget allocation. World Scientific Publishing Co., Singapore

    Book  Google Scholar 

  13. Chen C-H, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discret Event Dyn Syst 10(3):251–270

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen C-H, He D, Fu M, Lee LH (2008) Efficient simulation budget allocation for selecting an optimal subset. INFORMS J Comput 20(4):579–595

    Article  Google Scholar 

  15. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soci Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  16. Dobre OA, Rajan S, Inkol R (2009) Joint signal detection and classification based on first-order cyclostationarity for cognitive radios. EURASIP J Adv Signal Process (7). Special issue on dynamic spectrum access for wireless networking. http://dl.acm.org/citation.cfm?id=1661353

  17. Ephraim Y (1992) Statistical model based speech enhancement systems. Proc IEEE 80: 1526–1555

    Article  Google Scholar 

  18. Ephraim Y, Mark BL (2013) Bivariate Markov processes and their estimation. Found Trends Signal Process 6(1):1–95

    Article  MATH  Google Scholar 

  19. Ephraim Y, Mark BL (2015) Causal recursive parameter estimation for discrete-time hidden bivariate Markov chains. IEEE Trans Signal Process 63:2108–2117

    Article  MathSciNet  MATH  Google Scholar 

  20. Ephraim Y, Merhav N (2002) Hidden Markov processes. IEEE Trans Inf Theory 48(6): 1518–1569

    Article  MathSciNet  MATH  Google Scholar 

  21. Ephraim Y, Rahim M (1999) On second order statistics and linear estimation of cepstral coefficients. IEEE Trans Acoust Speech Signal Process 7:162–176

    Article  Google Scholar 

  22. FCC (2002) Spectrum policy task force. Technical report 02-135, Rep. ET Docket, Federal Communications Commission

    Google Scholar 

  23. Frost VS, Melamed B (1994) Traffic modeling for telecommunications networks. IEEE Commun Mag 32(3):70–81

    Article  Google Scholar 

  24. Gardner W (1991) Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process Mag 8(2):14–36

    Article  Google Scholar 

  25. Hayes MH (1996) Statistical digital signal processing and modeling, 1st edn. Wiley, New York

    Google Scholar 

  26. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  27. Heffes H, Lucantoni D (1986) A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J Sel Areas Commun 4(6):856–868

    Article  Google Scholar 

  28. Kemeny JG, Snell JL (1983) Finite Markov chains, 3rd edn. Springer, New York

    MATH  Google Scholar 

  29. Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, Orlando

    MATH  Google Scholar 

  30. Leu AE, McHenry M, Mark BL (2006) Modeling and analysis of interference in listen-before-talk spectrum access schemes. Int J Netw Manage 16(2):131–147

    Article  Google Scholar 

  31. Lunden J, Koivunen V, Huttunen A, Poor HV (2009) Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Trans Signal Process 57(11):4182–4195

    Article  MathSciNet  MATH  Google Scholar 

  32. Lunden J, Kassam SA, Koivunen V (2010) Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio. IEEE Trans Signal Process 58(1):38–52

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma J, Zhao G, Li Y (2008) Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans on Wirel Commun 7(11):4502–4507

    Article  Google Scholar 

  34. Mark BL, Leu AE (2007) Local averaging for fast handoffs in cellular networks. IEEE Trans Wirel Commun 6(3):866–874

    Article  Google Scholar 

  35. Mark JW, Zhuang W (2003) Wireless communications and networking. Pearson Education, Inc., Piscataway

    Google Scholar 

  36. Mishali M, Eldar YC (2011) Wideband spectrum sensing at sub-Nyquist rates. IEEE Signal Process Mag 28(4):102–135

    Article  Google Scholar 

  37. Neuts MF (1981) Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  38. Nguyen T, Mark BL, Ephraim Y (2013) Spectrum sensing using a hidden bivariate Markov model. IEEE Trans Wirel Commun 12(9):4582–4591

    Article  Google Scholar 

  39. Oksanen J, Koivunen V, Poor HV (2012) A sensing policy based on confidence bounds and a restless multi-armed bandit model. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp 318–323

    Google Scholar 

  40. Park CH, Kim SW, Lim SM, Song MS (2007) HMM based channel status predictor for cognitive radio. In: 2007 Asia-Pacific Microwave Conference, pp 1–4

    Google Scholar 

  41. Peh E, Liang Y-C, Guan YL, Zeng Y (2010) Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Trans Wirel Commun 9(12): 3838–3847

    Article  Google Scholar 

  42. Quan Z, Ma W-K, Cui S (2008) Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE J Sel Top Signal Process 2(1):28–40

    Article  Google Scholar 

  43. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  44. Rydén T (1997) On recursive estimation for hidden Markov models. Stoch Process Appl 66(1):79–96

    Article  MathSciNet  MATH  Google Scholar 

  45. Shared Spectrum Company (2010) General survey of radio frequency bands: 30 MHz to 3 GHz. Technical report

    Google Scholar 

  46. Stiller JC, Radons G (1999) Online estimation of hidden Markov models. IEEE Signal Process Lett 6(8):213–215

    Article  Google Scholar 

  47. Sun Y, Mark BL (2013) Interference model for spectrum sensing with power control. In: Proceeding of Conference on Information Science and Systems (CISS), Baltimore, pp 1–6

    Google Scholar 

  48. Sun Y, Mark BL, Ephraim Y (2015) Online parameter estimation for temporal spectrum sensing. IEEE Trans Wirel Commun 14(8):4105–4114

    Article  Google Scholar 

  49. Sun Y, Mark BL, Ephraim Y (2016) Collaborative spectrum sensing via online estimation of hidden bivariate Markov models. IEEE Trans Wirel Commun 15(8):5430–5439

    Article  Google Scholar 

  50. Tehrani P, Tong L, Zhao Q (2012) Asymptotically efficient multi-channel estimation for opportunistic spectrum access. IEEE Trans Signal Process 60(10):5347–5360

    Article  MathSciNet  MATH  Google Scholar 

  51. Tian Z, Giannakis GB (2006) A wavelet approach to wideband spectrum sensing for cognitive radios. In: Proceedings of 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp 1–5

    Google Scholar 

  52. Tian Z, Tafesse Y, Sadler BM (2012) Cyclic feature detection from sub-Nyquist samples for wideband spectrum sensing. IEEE J Sel Top Signal Process 6(1):58–69. Special Issue on Robust Measures and Tests Using Sparse Data for Detection and Estimation

    Google Scholar 

  53. Wang K, Chen L, Liu Q, Wang W, Li F (2015) One step beyond myopic probing policy: a heuristic lookahead policy for multi-channel opportunistic access. IEEE Trans Wirel Commun 14(2):759–769

    Article  Google Scholar 

  54. Wu FCJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11(1):95–103

    Article  MathSciNet  MATH  Google Scholar 

  55. Yu S-Z (2010) Hidden semi-Markov models. Artif Intell 174(2):215–243

    Article  MathSciNet  MATH  Google Scholar 

  56. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tuts 11(1):116–130

    Article  Google Scholar 

  57. Zhang W, Mallik RK, Letaief KB (2009) Optimization of cooperative spectrum sensing with enrgy detection in cognitive radio networks. IEEE Trans Wirel Commun 8(12):5761–5766

    Article  Google Scholar 

  58. Zhao Q, Tong L, Swami A, Chen Y (2007) Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework. IEEE J Sel Areas Commun 25(3):589–600

    Article  Google Scholar 

  59. Zhao Q, Krishnamachari B, Liu K (2008) On myopic sensing for multi-channel opportunistic access: structure, optimality, and performance. IEEE Trans Wirel Commun 7(12):5431–5440

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Science Foundation under Grants CNS-1421869 and AST-1547329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bruno, J.M., Ephraim, Y., Mark, B.L., Tian, Z. (2019). Spectrum Sensing Using Markovian Models. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_2

Download citation

Publish with us

Policies and ethics