Non-Cooperative and Cooperative Spectrum Sensing in 5G Cognitive Networks

  • Giuseppe Caso
  • Mai T. Phuong Le
  • Luca De Nardis
  • Maria-Gabriella Di Benedetto
Living reference work entry


5G is the expected next step of the mobile cellular network evolution, and it is considered as the answer to the ongoing huge increase of cellular users and services. The architecture envisioned for 5G includes a large number of different network entities and systems that share a common spectrum resource via a dynamic spectrum access (DSA) approach. This solution is expected to significantly increase the overall spectrum efficiency but also introduces the challenge of optimizing the coexistence between the entities forming the overall network, by limiting their mutual interference. Within this context, the cognitive radio (CR) paradigm, mainly focusing on its peculiar function, that is, spectrum sensing (SS), is being currently proposed as one of the main enablers for efficient DSA with limited interference. The goal of this chapter is to provide a comparative analysis on CR-inspired spectrum resource management (CR-SRM) mechanisms recently proposed for the 5G architecture, which mainly exploit SS, in order to characterize up-to-date research trends on the topic and highlight still-open challenges and possible future work directions.


  1. 1.
    Panwar N, Sharma S, Kumar Singh A (2016) A survey on 5G: the next generation of mobile communication. Elsevier Phys Commun 18(2):64–84CrossRefGoogle Scholar
  2. 2.
    Andrews JG et al (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18CrossRefGoogle Scholar
  4. 4.
    Ericsson (2016) 5G radio access – capabilities and technologies. White paper Uen 284:23–3204. Rev CGoogle Scholar
  5. 5.
    NTT DoCoMo Inc (2014) 5G radio access: requirements, concept and technologies. White paperGoogle Scholar
  6. 6.
    5GPPP (2015) The next generation of communication networks and services, the 5G infrastructure public private partnership (5GPPP), European CommissionGoogle Scholar
  7. 7.
    GSMA Intelligence (2014) Understanding 5G: perspectives on future technological advancements in mobile. White paperGoogle Scholar
  8. 8.
    METIS Project (2013) Scenarios, requirements and KPIs for 5G mobile and wireless system, Doc. ID:ICT-317669-METIS/D1.1Google Scholar
  9. 9.
    Qualcomm Technologies Inc (2016) Leading the world to 5G. White paperGoogle Scholar
  10. 10.
    Demestichas P et al (2013) 5G on the horizon: key challenges for the radio-access network. IEEE Veh Technol Mag 8(3):47–53CrossRefGoogle Scholar
  11. 11.
    Hossain E, Hasan M (2015) 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag 18(3):11–21CrossRefGoogle Scholar
  12. 12.
    Bhushan N et al (2014) Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 52(2):82–89CrossRefGoogle Scholar
  13. 13.
    Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195CrossRefGoogle Scholar
  14. 14.
    Ngo HQ (2015) Massive MIMO: fundamentals and system designs. PhD thesis, Linkoping University Electronic PressGoogle Scholar
  15. 15.
    Rappaport TS et al (2013) Millimiter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349CrossRefGoogle Scholar
  16. 16.
    Hong S et al (2014) Applications of self-interference cancellation in 5G and beyond. IEEE Commun Mag 52(2):114–121CrossRefGoogle Scholar
  17. 17.
    Xiao L, Wang P, Niyato D, Kim D, Han Z (2014) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutorials 17(2):757–789Google Scholar
  18. 18.
    Checko A et al (2015) Cloud RAN for mobile networks – a technology overview. IEEE Commun Surv Tutorials 17(1):405–426CrossRefGoogle Scholar
  19. 19.
    Liang C, Yu F (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tutorials 17(1):358–380CrossRefGoogle Scholar
  20. 20.
    Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC (2012) Femtocells: past, present, and future. IEEE J Sel Areas Commun 30(3):497–508CrossRefGoogle Scholar
  21. 21.
    ElSawy H, Hossain E, Kim DI (2013) HetNets with cognitive small cells: user offloading and distributed channel access techniques. IEEE Commun Mag 51(6):28–36CrossRefGoogle Scholar
  22. 22.
    Hossain E, Rasti M, Tabassum H, Abdelnasser A (2014) Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel Commun 21(3):118–127CrossRefGoogle Scholar
  23. 23.
    Wang W, Yu G, Huang A (2013) Cognitive radio enhanced interference coordination for femtocell networks. IEEE Commun Mag 51(6):37–43CrossRefGoogle Scholar
  24. 24.
    Sharma SK, Patwary M, Chatzinotas S, Ottersten B, Abdel-Maguid M (2015) Repeater for 5G wireless: a complementary contender for spectrum sensing intelligence. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 1416–1421Google Scholar
  25. 25.
    Hong X, Wang J, Wang CX, Shi J (2014) Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off. IEEE Commun Mag 52(7):46–53CrossRefGoogle Scholar
  26. 26.
    Huang L, Zhu G, Du X (2013) Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage. IEEE Wirel Commun 20(2):44–51CrossRefGoogle Scholar
  27. 27.
    Galinina O et al (2014) Capturing spatial randomness of heterogeneous cellular/WLAN deployments with dynamic traffic. IEEE J Sel Areas Commun 32(6):1083–1099CrossRefGoogle Scholar
  28. 28.
    Lien S-Y, Chen K-C, Liang Y-C, Lin Y (2014) Cognitive radio resource management for future cellular networks. IEEE Wirel Commun 21(1):70–79CrossRefGoogle Scholar
  29. 29.
    FCC Spectrum Policy Task Force (2002) Report of the spectrum efficiency working group. Technical report 02–155Google Scholar
  30. 30.
    Staple G, Werbach K (2004) The end of spectrum scarcity. IEEE Spectr 41(3):48–52CrossRefGoogle Scholar
  31. 31.
    Zhao Q, Swami A (2007) A survey of dynamic spectrum access: signal processing and networking perspectives. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE Press, pp IV-1349–IV-1352Google Scholar
  32. 32.
    Hatfield DN, Weiser PJ (2005) Property rights in spectrum: taking the next step. In: Proceedings of the IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks. IEEE Press, pp 43–55Google Scholar
  33. 33.
    Akyildiz IF, Altunbasak Y, Fekri F, Sivakumar R (2004) AdaptNet: adaptive protocol suite for next generation wireless internet. IEEE Commun Mag 42(3):128–138CrossRefGoogle Scholar
  34. 34.
    Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Elsevier Comput Netw 50:2127–2159CrossRefMATHGoogle Scholar
  35. 35.
    Etkin R, Parekh A, Tse D (2007) Spectrum sharing for unlicensed bands. IEEE J Sel Areas Commun 25(3):517–528CrossRefGoogle Scholar
  36. 36.
    Di Benedetto M-G, Cattoni AF, Fiorina J, Bader F, De Nardis L (eds) (2015) Cognitive radio and networking for heterogeneous wireless networks. Springer, ChamGoogle Scholar
  37. 37.
    Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials 11(1):116–130CrossRefGoogle Scholar
  38. 38.
    Ali A, Hamouda W (2016) Advances on spectrum sensing for cognitive radio networks: theory and applications. IEEE Commun Surv Tutorials PP(99):1Google Scholar
  39. 39.
    Caso G, De Nardis L, Thobaben R, Di Benedetto M-G (2015) Cooperative sensing of spectrum opportunities. In: Holland O, Bogucka H, Medeisis A (eds) Opportunistic spectrum sharing and white space access: the practical reality. John Wiley & Sons, Hoboken, New Jersey, pp 143–165CrossRefGoogle Scholar
  40. 40.
    Axell A, Leus G, Larsson E, Poor HV (2012) Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process Mag 29(3):101–116CrossRefGoogle Scholar
  41. 41.
    ElSawy H, Hossain E (2013) Channel assignment and opportunistic spectrum access in two-tier cellular networks with cognitive small cells. In: Proceedings of the IEEE Global Communications Conference. IEEE Press, pp 4477–4482Google Scholar
  42. 42.
    Pantisano F, Bennis M, Saad W, Debbah M, Latva-Aho M (2013) interference alignment for cooperative femtocell networks: a game-theoretic approach. IEEE Trans Mob Comput 12(11):2233–2246CrossRefGoogle Scholar
  43. 43.
    Zhuang B, Guo D, Honig ML (2015) Traffic-driven spectrum allocation in heterogeneous networks. IEEE J Sel Areas Commun 33(10):2027–2038CrossRefGoogle Scholar
  44. 44.
    Qiu J et al (2016) Hierarchical resource allocation framework for hyper-dense small cell networks. IEEE Access 4:8657–8669CrossRefGoogle Scholar
  45. 45.
    Qiao X, Xie W, Yang F (2015) Cooperative sequential sensing of radio transmissions in 5G with improved cost-delay tradeoff. Hindawi Int J Distrib Sens Netw 2015:1–12. ID:456074Google Scholar
  46. 46.
    Zhang Z, Zhang W, Zeadally S, Wang Y, Liu Y (2015) Cognitive radio spectrum sensing framework based on multi-agent architecture for 5G networks. IEEE Wirel Commun 22(6):34–39CrossRefGoogle Scholar
  47. 47.
    Thilina KGM, Hossain E, Kim DI (2016) DCCC-MAC: a dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Trans Veh Technol 65(5):3597–3613CrossRefGoogle Scholar
  48. 48.
    Sardellitti S, Barbarossa S (2013) Joint optimization of collaborative sensing and radio resource allocation in small-cell networks. IEEE Trans Signal Process 61(18):4506–4520MathSciNetCrossRefGoogle Scholar
  49. 49.
    Li B, Li S, Nallanathan A, Zhao C (2015) Deep sensing for future spectrum and location awareness 5G communications. IEEE J Sel Areas Commun 33(7):1331–1344CrossRefGoogle Scholar
  50. 50.
    Zhang H, Jiang C, Mao X, Chen HH (2016) Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Trans Veh Technol 65(3):1761–1771CrossRefGoogle Scholar
  51. 51.
    Zhang H, Nie Y, Cheng J, Leung VCM, Arumugam N (2016) Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans Wirel Commun PP(99):1Google Scholar
  52. 52.
    Akhtar AM, Wang X, Hanzo L (2016) Synergistic spectrum sharing in 5G HetNets: a harmonized SDN-enabled approach. IEEE Commun Mag 54(1):40–47CrossRefGoogle Scholar
  53. 53.
    Jiang C, Zhang H, Ren Y, Chen HH (2014) Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Commun Mag 52(7):14–20CrossRefGoogle Scholar
  54. 54.
    Liu Y, Zhang Y, Yu R, Xie S (2015) Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Netw 29(3):75–81CrossRefGoogle Scholar
  55. 55.
    Huawei et al (2013) Discussion paper on unlicensed spectrum integration to IMT systems, 3GPP RAN 62 RP-131723Google Scholar
  56. 56.
    Hur S et al (2013) Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 61(10):4391–4403CrossRefGoogle Scholar
  57. 57.
    Bennis M et al (2013) When cellular meets WiFi in wireless small cell networks. IEEE Commun Mag 51(6):44–50CrossRefGoogle Scholar
  58. 58.
    Hajmohammad S, Elbiaze H (2013) Unlicensed spectrum splitting between femtocell and WiFi. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 1883–1888Google Scholar
  59. 59.
    Almeida E et al (2013) Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In: Proceedings of the IEEE International Conference on Communications. IEEE Press, pp 5083–5088Google Scholar
  60. 60.
    Zhang H, Chu X, Guo W, Wang S (2015) Coexistence of WiFi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun Mag 53(3):158–164CrossRefGoogle Scholar
  61. 61.
    Hosseini H, Anpalagan A, Raahemifar K, Erkucuk S, Habib S (2016) Joint wavelet-based spectrum sensing and FBMC modulation for cognitive mmWave small cell networks. IET Commun 10(14):1803–1809CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Giuseppe Caso
    • 1
  • Mai T. Phuong Le
    • 1
  • Luca De Nardis
    • 1
  • Maria-Gabriella Di Benedetto
    • 1
  1. 1.Department of Information Engineering, Electronics and Telecommunications (DIET)Sapienza University of RomeRomeItaly

Personalised recommendations