Waveform Designs for Cognitive Radio and Dynamic Spectrum Access Applications

  • Ahmet YazarEmail author
  • Mohamed Elkourdi
  • Huseyin Arslan
Living reference work entry


Cognitive radio and dynamic spectrum access systems are effective ways of using radio spectrum which is a scarce source. Cognitive radio applications changed the paradigm for the wireless communications systems in the past decades. Besides that, different communications systems and wireless communications channels require different waveform designs and radio access technologies. In this study, a general design and evaluation procedure for the new waveform techniques are presented based on cognitive radio and dynamic spectrum access requirements. Radio access technology researches for the future-generation cellular systems and cognitive radio systems intersect to each other. Therefore, some of the future waveform designs and related modifications are analyzed under the cognitive radio perspective. Several waveforms which have various trade-off situations are discussed from a general perspective and an adaptivity/flexibility perspective.


Orthogonal Frequency Division Multiplex Cognitive Radio Orthogonal Frequency Division Multiplex System Orthogonal Frequency Division Multiple Access Cyclic Prefix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mahmoud HA, Yucek T, Arslan H (2009) OFDM for cognitive radio: merits and challenges. IEEE Wirel Commun 16(2):6–15CrossRefGoogle Scholar
  2. 2.
    Yazar A, Onat FA, Arslan H (2016) New generation waveform approaches for 5G and beyond. In: IEEE Signal Processing and Communications Applications Conference (SIU), pp 961–964Google Scholar
  3. 3.
    I C-L, Han S, Xu Z, Wang S, Sun Q, Chen Y (2016) New paradigm of 5G wireless internet. IEEE J Sel Areas Commun 34(3):474–482CrossRefGoogle Scholar
  4. 4.
    Elkourdi M, Pekoz B, Guvenkaya E, Arslan H (2016) Waveform design principles for 5G and beyond. In: IEEE Wireless and Microwave Technology Conference (WAMICON), pp 1–6Google Scholar
  5. 5.
    Arslan H, Yucek T (2006) Adaptation of wireless mobile multi-carrier systems. In: Li W, Xiao Y (eds) Adaptation techniques in wireless multimedia networks, 1st edn. Nova Science Publishers, New York, pp 215–240Google Scholar
  6. 6.
    Keller T, Hanzo L (2000) Adaptive modulation techniques for duplex OFDM transmission. IEEE Trans Veh Technol 49(5):1893–1906CrossRefGoogle Scholar
  7. 7.
    Harvatin DT, Ziemer RE (1997) Orthogonal frequency division multiplexing performance in delay and doppler spread channels. In: IEEE Vehicular Technology Conference (VTC), vol 3, pp 1644–1647Google Scholar
  8. 8.
    Weiss T, Krohn A, Capar F, Martoyo I, Jondral FK (2003) Synchronization algorithms and preamble concepts for spectrum pooling systems. In: IST Mobile & Wireless Telecommunications Summit, pp 788–792Google Scholar
  9. 9.
    Sahin A, Arslan H (2011) Edge windowing for OFDM based systems. IEEE Commun Lett 15(11):1208–1211CrossRefGoogle Scholar
  10. 10.
    Bala E, Li J, Yang R (2013) Shaping specktral leakage: a novel low-complexity transceiver architecture for cognitive radio. IEEE Veh Technol Mag 8(3):38–46CrossRefGoogle Scholar
  11. 11.
    Guvenkaya E, Sahin A, Bala E, Yang R, Arslan H (2015) A windowing technique for optimal time-frequency concentration and ACI rejection in OFDM-based systems. IEEE Trans Commun 63(12):4977–4989CrossRefGoogle Scholar
  12. 12.
    Mahmoud HA, Arslan H (2008) Sidelobe Suppression in OFDM-based spectrum sharing systems using adaptive symbol transition. IEEE Commun Lett 12(2):133–135CrossRefGoogle Scholar
  13. 13.
    Yamaguchi H (2004) Active interference cancellation technique for MB-OFDM cognitive radio. In: IEEE European Microwave Conference, pp 1105–1108Google Scholar
  14. 14.
    Brandes S, Cosovic I, Schnell M (2006) Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Commun Lett 10(6):420–422CrossRefGoogle Scholar
  15. 15.
    Cosovic I, Brandes S, Schnell M (2006) Subcarrier weighting: a method for sidelobe suppression in OFDM systems. IEEE Commun Lett 10(6):444–446CrossRefGoogle Scholar
  16. 16.
    Li D, Dai X, Zhang H (2009) Sidelobe suppression in NC-OFDM systems using constellation adjustment. IEEE Commun Lett 13(5):327–329CrossRefGoogle Scholar
  17. 17.
    Joshi DR, Popescu DC, Dobre OA, Baddour KE (2011) Spectral shaping for adjacent band interference suppression in cognitive radio systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–5Google Scholar
  18. 18.
    Tom A, Sahin A, Arslan H (2013) Mask compliant precoder for OFDM spectrum shaping. IEEE Commun Lett 17(3):447–450CrossRefGoogle Scholar
  19. 19.
    Beek J, Berggren F (2009) N-continuous OFDM. IEEE Commun Lett 13(1):1–3CrossRefGoogle Scholar
  20. 20.
    Beek J (2009) Sculpting the multicarrier spectrum: a novel projection precoder. IEEE Commun Lett 13(12):881–883CrossRefGoogle Scholar
  21. 21.
    Beek J (2010) Orthogonal multiplexing in a subspace of frequency well-localized signals. IEEE Commun Lett 14(10):882–884CrossRefGoogle Scholar
  22. 22.
    Guvenkaya E, Sahin E, Arslan H (2015) N-coninuous OFDM with CP alignment. In: IEEE Military Communications Conference (MILCOM), pp 587–592Google Scholar
  23. 23.
    Zhang JA, Huang X, Cantoni A, Guo YJ (2012) Sidelobe suppression with orthogonal projection for multicarrier systems. IEEE Trans Commun 60(2):589–599CrossRefGoogle Scholar
  24. 24.
    Cosovic I, Mazzon T (2006) Suppression of sidelobes in OFDM systems by multiple-choice sequence. Eur Trans Telecommun 17:623–630CrossRefGoogle Scholar
  25. 25.
    Tom A, Sahin A, Arslan H (2016) Suppressing alignment: joint PAPR and out-of-band power leakage reduction for OFDM-based systems. IEEE Trans Commun 64(3):1100–1109CrossRefGoogle Scholar
  26. 26.
    Ni C, Jiang T, Peng W (2015) Joint PAPR reduction and sidelobe suppression using signal cancellation in NC-OFDM-based cognitive radio systems. IEEE Trans Veh Technol 64(3):964–972CrossRefGoogle Scholar
  27. 27.
    Sahin A, Guvenc I, Arslan H (2014) A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun Surv Tutorials 16(3):1312–1338CrossRefGoogle Scholar
  28. 28.
    Zhang X, Jia M, Chen L, Ma J, Qiu J (2015) Filtered-OFDM – enabler for flexible waveform in the 5th generation cellular networks. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6Google Scholar
  29. 29.
    Vakilian V, Wild T, Schaich F, Brink ST, Frigon JF (2013) Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 223–228Google Scholar
  30. 30.
    Huemer M, Hofbauer C, Huber JB (2012) Non-systematic complex number RS coded OFDM by unique word prefix. IEEE Trans Signal Process 60(1):285–299MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bellanger M (2010) FBMC physical layer: a primer. In: Physical Layer for Dynamic Spectrum Access and Cognitive Radio (PHYDYAS)Google Scholar
  32. 32.
    Farhang-Boroujeny B (2011) OFDM versus filter bank multicarrier. IEEE Signal Process Mag 28(3):92–112CrossRefGoogle Scholar
  33. 33.
    Fettweis G, Krondorf M, Bittner S (2009) GFDM – generalized frequency division multiplexing. In: IEEE VTC-Spring, pp 1–4Google Scholar
  34. 34.
    Berardinelli G, Tavares FML, Sorensen TB, Mogensen P, Pajukoski K (2013) Zero-tail DFT-spread-OFDM signals. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 229–234Google Scholar
  35. 35.
    Benvenuto N, Tomasin S, Tomba L (2002) Equalization methods in OFDM and FMT systems for broadband wireless communications. IEEE Trans Commun 50(9):1413–1418CrossRefGoogle Scholar
  36. 36.
    Berardinelli G, Temino LR, Frattasi S, Rahman M, Mogensen P (2008) OFDMA vs. SC-FDMA: performance comparison in local area IMT-A scenarios. IEEE Wirel Commun 15(5):64–72CrossRefGoogle Scholar
  37. 37.
    Ankarali Z, Karabacak M, Arslan H (2014) Cyclic feature concealing CP selection for physical layer security. In: IEEE Military Communications Conference (MILCOM), pp 485–489Google Scholar
  38. 38.
    Guvenkaya E, Tom A, Arslan H (2013) Joint sidelobe suppression and PAPR reduction in OFDM using partial transmit sequences. In: IEEE Military Communications Conference (MILCOM), pp 95–100Google Scholar
  39. 39.
    Sahin A, Yang R, Ghosh M, Olesen RL (2015) An improved unique word DFT-spread OFDM scheme for 5G systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6Google Scholar
  40. 40.
    Sahin A, Yang R, Bala E, Beluri CM, Olesen RL (2016) Flexible DFT-S-OFDM: solutions and challenges. IEEE Commun Mag 54(11):106–112CrossRefGoogle Scholar
  41. 41.
    Kumar U, Ibars C, Bhorkar A, Jung H (2015) A waveform for 5G: guard interval DFT-s OFDM. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 1–6Google Scholar
  42. 42.
    Berardinelli G, Pederson KI, Sorensen TB, Mogensen P (2016) Generalized DFT-spread-OFDM as 5G waveform. IEEE Commun Mag 54(11):99–105CrossRefGoogle Scholar
  43. 43.
    Devi B, Lalleima N, Singh S (2014) Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks. Int J Comput Appl 100(19):27–31Google Scholar
  44. 44.
    Farhang A, Marchetti N, Figueiredo F, Miranda J (2014) Massive MIMO and waveform design for 5th generation wireless communication systems. In: International Conference on 5G for Ubiquitous Connectivity (5GU), pp 70–75Google Scholar
  45. 45.
    Wong CY, Cheng RS, Lataief KB, Murch RD (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun 17(10):1747–1758CrossRefGoogle Scholar
  46. 46.
    Sahin A, Arslan H (2012) Multi-user aware frame structure for OFDMA based system. In: IEEE Vehicular Technology Conference (VTC Fall), pp 1–5Google Scholar
  47. 47.
    Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, Eidson B (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag 40(4):58–66CrossRefGoogle Scholar
  48. 48.
    Coon J, Sandell M, Beach M, McGeehan J (2006) Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems. IEEE Trans Wirel Commun 5(6):1488–1496CrossRefGoogle Scholar
  49. 49.
    Huemer M, Witschnig H, Hausner J (2003) Unique word based phase tracking algorithms for SC/FDE-systems. In: IEEE Global Telecommunications Conference (GLOBECOM), pp 70–74Google Scholar
  50. 50.
    Daher A, Baghious EH, Burel G, Radoi E (2010) Overlap-save and overlap-add filters: optimal design and comparison. IEEE Trans Signal Process 58(6):3066–3075MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ahmet Yazar
    • 1
    Email author
  • Mohamed Elkourdi
    • 2
  • Huseyin Arslan
    • 1
    • 2
  1. 1.Department of Electrical and Electronics EngineeringIstanbul Medipol UniversityIstanbulTurkey
  2. 2.Department of Electrical EngineeringUniversity of South FloridaTampaUSA

Section editors and affiliations

  • Wei Zhang
    • 1
  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesSydneyAustralia

Personalised recommendations