Skip to main content

Cognitive Radio Network Security

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio
  • 342 Accesses

Abstract

Cognitive radio networks (CRNs) emerge as a possible solution to increase spectrum efficiency by allowing cognitive radios (CRs) to access spectrum in an opportunistic manner. Although security in CRNs has received less attention than other areas of CR technology, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, an open channel is used for communications that can easily be accessed by attackers. On the other hand, the particular attributes of CRNs raise new opportunities to malicious users, which can disrupt network operation. In this chapter, we provide an overview of those threats that are specific to CRNs. We classify them according to the layer in which the attacks are performed, give an insight of their impact on the network performance, and describe potential countermeasures that can be used to prevent them or mitigate their effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. 802.22 WG (2015) IEEE Standard for Information Technology – Telecommunications and Information Exchange Between Systems Wireless Regional Area Networks (WRAN) – Specific Requirements Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands. http://ieeexplore.ieee.org. Cited 15 Nov 2016

  2. Abbas N, Nasser Y, El Ahmad K (2015) EURASIP J Wirel Commun Netw 174:1–20. DOI10.1186/s13638-015-0381-7

    Google Scholar 

  3. Akyildiz IF, Lee W-Y, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836

    Article  Google Scholar 

  4. Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Netw 50(13):2127–2159

    Article  MATH  Google Scholar 

  5. Akyildiz IF, Lo BF, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4(1):40–62. DOI10.1016/j.phycom.2010.12.003

    Google Scholar 

  6. Anand S, Jin Z, Subbalakshmi KP (2008) An analytical model for primary user emulation attacks in cognitive radio networks. Paper Presented at the 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Chicago, 14–17 Oct 2008

    Google Scholar 

  7. Baldini G, Sturman T, Biswas AR, Leschhorn R, Godor G, Street M (2012) Security aspects in software defined radio and cognitive radio networks: a survey and a way ahead. IEEE Commun Surv Tutorials 14(2):355–379

    Article  Google Scholar 

  8. Bhattacharjee S, Sengupta S, Chatterjee M (2013) Vulnerabilities in cognitive radio networks: a survey. Comput Commun 36(13):1387–1398

    Article  Google Scholar 

  9. Brawerman A, Blough D, Bing B (2004) Securing the download of radio configuration files for software defined radio devices. In: Proceedings of the Second International Workshop on Mobility Management & Wireless Access Protocols, Philadelphia, 1 Oct 2004

    Google Scholar 

  10. Chen R, Park JM, Bian K (2008) Robust distributed spectrum sensing in cognitive radio networks. In: Proceedings of the IEEE 27th Conference on Computer Communications (INFOCOM 2008), Phoenix, 16–17 Apr 2008

    Google Scholar 

  11. Chen R, Park J-M, Hou YT, Reed JH (2008) Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Commun Mag 46(4):50–55

    Article  Google Scholar 

  12. Chen R, Park J-M, Reed JH (2008) Defense against primary user emulation attacks in cognitive radio networks. IEEE J Sel Areas Commun 26(1):25–37

    Article  Google Scholar 

  13. Chen H, Zhou M, Xie L, Wang K, Li J (2016) Joint spectrum sensing and resource allocation scheme in cognitive radio networks with spectrum sensing data falsification attack. IEEE Trans Veh Technol 65(11):9181–9191

    Article  Google Scholar 

  14. Cho J-H, Swami A, Chen R (2011) A survey on trust management for mobile ad hoc networks. IEEE Commun Surv Tutorials 13(4):562–583

    Article  Google Scholar 

  15. Dillinger M, Madani K, Alonistioti N (2005) Software defined radio: architectures, systems and functions. Wiley, Hoboken

    Google Scholar 

  16. Di Pietro R, Oligeri G (2013) Jamming mitigation in cognitive radio networks. IEEE Netw 27(3):10–15

    Article  Google Scholar 

  17. Fragkiadakis AG, Tragos EZ, Askoxylakis IG (2013) A survey on security threats and detection techniques in cognitive radio networks. IEEE Commun Surv Tutorials 15(1):428–445

    Article  Google Scholar 

  18. Grover K, Lim A, Yang Q (2014) Jamming and anti–jamming techniques in wireless networks: a survey. N Engl J Med 17(4):197–215

    Google Scholar 

  19. Husheng L, Zhu H (2010) Catch me if you can: an abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 9(11):3554–3565; 2(5-6):399–413. DOI10.1504/IJSNET.2007.014364

    Google Scholar 

  20. Kaligineedi P, Khabbazian M, Bhargava VK (2008) Secure cooperative sensing techniques for cognitive radio systems. Paper Presented at the IEEE International Conference on Communications (ICC’08), Beijing, 19–23 May 2008

    Google Scholar 

  21. Kaligineedi P, Khabbazian M, Bhargava VK (2010) Malicious user detection in a cognitive radio cooperative sensing system. IEEE Trans Wirel Commun 9(8):2488–2497

    Article  Google Scholar 

  22. Kramer RM, Cook KS (2004) Trust and distrust in organizations: dilemmas and approaches. The future of modern genomics. Russell Sage Foundation, New York

    Google Scholar 

  23. Lee J-H (2015) Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wirel Pers Commun 83(4):3033–3044

    Article  Google Scholar 

  24. Marinho J, Granjal J, Monteiro E (2015) A survey on security attacks and countermeasures with primary user detection in cognitive radio networks. EURASIP J Inf Secur 2015(1):1–14

    Article  Google Scholar 

  25. Michael LB, Mihaljevic MJ, Haruyama S, Kohno R (2002) A framework for secure download for software-defined radio. IEEE Commun Mag 40(7):88–96

    Article  Google Scholar 

  26. Michiardi P, Molva R (2003) Secure cooperative sensing techniques for cognitive radio systems. In: Proceedings of WiOpt 2003, INRIA, Sophia-Antipolis, 3–5 May 2003

    Google Scholar 

  27. Min AW, Shin KG, Hu X (2010) Secure cooperative sensing in IEEE 802.22 WRANs using shadow fading correlation. IEEE Trans Mob Comput 10(10):1434–1447

    Article  Google Scholar 

  28. Mitchell C (2005) Trusted computing. Iet, London

    Book  Google Scholar 

  29. Patwari N, Ash JN, Kyperountas S, Hero AO III, Moses RL, Correal NS (2005) Locating the nodes: cooperative localization in wireless sensor networks. Signal Process Mag 22(4):54–69

    Article  Google Scholar 

  30. Pelechrinis K, Koutsopoulos I, Broustis I, Krishnamurthy SV (2009) Lightweight jammer localization in wireless networks: system design and implementation. In: Proceedings of the Global Telecommunications Conference (GLOBECOM 2009), Hawai, 30 Nov–4 Dec 2009

    Google Scholar 

  31. Qin T, Yu H, Leung C, Shen Z, Miao C (2009) Towards a trust aware cognitive radio architecture. SIGMOBILE Mob Comput Commun Rev 13(2):86–95. DOI10.1145/1621076.1621085

    Google Scholar 

  32. Rawat AS, Anand P, Hao C, Varshney PK (2011) Collaborative spectrum sensing in the presence of Byzantine attacks in cognitive radio networks. IEEE Trans Signal Process 59(2):774–786

    Article  MathSciNet  Google Scholar 

  33. Sawada M, Cossette D, Wellar B, Kurt T (2006) Analysis of the urban/rural broadband divide in Canada: using GIS in planning terrestrial wireless deployment. Gov Inf Q 23(3):454–479

    Article  Google Scholar 

  34. Song C, Zhang Q (2009) Achieving cooperative spectrum sensing in wireless cognitive radio networks. ACM SIGMOBILE Mob Comput Commun Rev 13(2):14–25

    Article  Google Scholar 

  35. Walters JP, Liang Z, Shi W, Chaudhary V (2007) Wireless sensor network security: a survey. Secur Distrib Grid Mob Pervasive Comput 1:367

    Google Scholar 

  36. Wang W, Bhattacharjee S, Chatterjee M, Kwiat K (2013) Collaborative jamming and collaborative defense in cognitive radio networks. Pervasive Mob Comput 9(4):572–587

    Article  Google Scholar 

  37. Wang B, Wu Y, Liu KJR, Clancy TC (2011) An anti-jamming stochastic game for cognitive radio networks. IEEE J Sel Areas Commun 29(4):877–889

    Article  Google Scholar 

  38. Yifeng C, Yijun M, Ota K, Changqing L, Mianxiong D, Yang L (2014) Optimal data fusion of collaborative spectrum sensing under attack in cognitive radio networks. IEEE Netw 28(1):17–23

    Article  Google Scholar 

  39. Zeng Y, Liang Y-C, Hoang AT, Zhang R (2010) A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J Adv Signal Process 78(2):74 2010. DOIhttp://dx.doi.org/10.1155/2010/381465

    Google Scholar 

  40. Zhang L, Ding G, Wu Q, Zou Y, Han Z, Wang J (2015) Byzantine attack and defense in cognitive radio networks: a survey. IEEE Commun Surv Tutorials 17(3):1342–1363

    Article  Google Scholar 

  41. Zhang T, Li Z, Safavi-Naini R (2014) Incentivize cooperative sensing in distributed cognitive radio networks with reputation-based pricing. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM 2014), Toronto, 27 Apr–2 May 2014

    Google Scholar 

  42. Zhang W, Mallik RK, Letaief K (2008) Cooperative spectrum sensing optimization in cognitive radio networks. In: Proceedings of the IEEE International Conference on Communications (ICC 2008), Beijing, 19–23 May 2008

    Google Scholar 

  43. Zhang K, Mao Y, Leng S, Fang S (2013) Efficient anti-jamming strategies in multi-channel wireless networks. In: Proceedings of the 2013 International Conference on Computational Problem-solving (ICCP), Jiuzhai, 22–23 Oct 2013

    Google Scholar 

  44. Zou Y, Zhu J (2016) Physical-layer security for cooperative relay networks. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga León .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

León, O., Subbalakshmi, K.P. (2017). Cognitive Radio Network Security. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics