Skip to main content

Cooperative Spectrum Sensing: From Fundamental Limits to Practical Designs

  • Living reference work entry
  • First Online:

Abstract

The first and foremost function in cognitive radio is spectrum sensing. To overcome the performance bottleneck created by fading and shadowing effects of the wireless channel, cooperation among sensing users is proposed as a promising solution. However, most designs of cooperative sensing strategies are developed in a rather ad hoc manner due to the lack of the fundamental knowledge on the cooperation gain. Hence, in this chapter, the cooperation gain in the context of cooperative spectrum sensing is rigorously quantified via diversity and error exponent analyses. The fundamental limits of the diversity and error exponent are derived as functions of key system parameters. After that, a couple of case studies are presented to illustrate how the concepts of diversity and error exponent can guide practical designs of cooperative spectrum sensing.

This is a preview of subscription content, log in via an institution.

References

  1. Arratia R, Gordon L (1989) Tutorial on large deviations for the binomial distribution. Bull Math Biol 51(1):125–131

    Article  MathSciNet  MATH  Google Scholar 

  2. Cabric D, Tkachenko A, Brodersen RW (2006) Experimental study of spectrum sensing based on energy detection and network cooperation. In: Proceedings of ACM 1st International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, Aug 2006, pp 1–8

    Google Scholar 

  3. Chaudhari S, Lunden J, Koivunen V, Poor HV (2010) Cooperative sensing with imperfect reporting channels: hard decisions or soft decisions? IEEE Trans Signal Process 60(1):18–28

    Article  MathSciNet  Google Scholar 

  4. Chong EK, Zak SH (2013) An introduction to optimization, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  5. Cui S, Xiao J, Goldsmith AJ, Luo Z, Poor HV (2007) Estimation diversity and energy efficiency in distributed sensing. IEEE Trans Signal Process 55(9):4683–4695

    Article  MathSciNet  Google Scholar 

  6. Duan D, Yang L, Principe JC (2010) Cooperative diversity of spectrum sensing for cognitive radio systems. IEEE Trans Sig Process 58(6):3218–3227

    Article  MathSciNet  Google Scholar 

  7. Duan D, Yang L (2012) Cooperative spectrum sensing with ternary local decisions. IEEE Commun Lett 16(9):1512–1515

    Article  Google Scholar 

  8. Duan D, Yang L, Scharf LL, Cui S (2013) Large deviation solution for cooperative spectrum sensing with diversity analysis. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Atlanta, 9–13 Dec 2013

    Google Scholar 

  9. Duan D, Scharf L, Yang L (2017) LD approach to asymptotically optimum sensor fusion. IET Commun 11(5):680–686

    Article  Google Scholar 

  10. Ghasemi A, Sousa ES (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, 8–11 Nov 2005, pp 131–136

    Google Scholar 

  11. Han YI, Kim T (2001) Mutual and conditional mutual informations for optimizing distributed Bayes detectors. IEEE Trans Aerosp Electron Syst 37(1):147–157

    Article  MathSciNet  Google Scholar 

  12. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Select Areas Commun 23(2):201–220

    Article  Google Scholar 

  13. Hong S, Vu MH, Tarokh V (2008) Cognitive sensing based on side information. In: IEEE Sarnoff Symposium, Princeton, 28–30 Apr 2008, pp 1–6

    Google Scholar 

  14. Kaewprapha P, Li J, Yu Y (2010) Cooperative spectrum sensing with tri-state probabilistic inference. In: Proceedings of Military Communications Conference, San Jose, 31 Oct–3 Nov 2010, pp 318–323

    Google Scholar 

  15. Ma J, Zhao G, Li Y (2008) Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 7(11):4502–4507

    Article  Google Scholar 

  16. Mishra SM, Tandra R, Sahai A (2007) The case for multiband sensing. In: Proceedings of the Forty-Fifth Annual Allerton Conference on Communication, Control, and Computing, The Allerton House, University of Illinois, Sept 2007. [Online] Available: http:///php/pubs/pubs.php/114.html

    Google Scholar 

  17. Mustonen M, Matinmikko M, Mämmalä A (2009) Cooperative spectrum sensing using quantized soft decision combining. In: Proceedings of the Fourth International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Hannover, 22–24 June 2009, pp 1–5

    Google Scholar 

  18. Pezeshki A, Calderbank R, Howard SD (2007) Diversity order for detection with distributed sensors. IEEE Trans Signal Process Submitted November 2007

    Google Scholar 

  19. Poor HV (1994) An introduction to signal detection and estimation, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  20. Quan Z, Cui S, Sayed AH (2008) Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE J Sel Top Singal Process 2(1):28–40

    Article  Google Scholar 

  21. Scharf L (1991) Statistical signal processing-detection, estimation and time series analysis. Addison-Wesley, Reading

    MATH  Google Scholar 

  22. Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Signal Process 2:4–17

    Article  Google Scholar 

  23. Tse DNC, Viswanath P (2005) Fundamentals of wireless communications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  24. Tsitsiklis JN (1988) Decentralized detection by a large number of sensors. Math Control Signals Syst 1(2):167–182

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsitsiklis J, Athans M (1985) On the complexity of decentralized decision making and detection problems. IEEE Trans Autom Control 30(5):440–446

    Article  MathSciNet  MATH  Google Scholar 

  26. Unnikrishnan J, Veeravalli VV (2008) Cooperative sensing for primary detection in cognitive radio. IEEE J Sel Top Singal Process 2(1):18–27

    Article  Google Scholar 

  27. Zhao Q, Sadler BM (2007) A survey of dynamic spectrum access. IEEE Signal Process Mag 24(3):79–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Duan .

Editor information

Editors and Affiliations

Section Editor information

Appendices

Appendices

Appendix 1: Proof of Theorem 2

With \(\theta _{s} = N(1 + \frac{1} {\gamma } )\log (\gamma +1)\), as γ → +, \(e^{-\theta _{s}} = (1+\gamma )^{-N(1+\frac{1} {\gamma } )} \sim (\gamma +1)^{-N}\) and \(\sum _{i=0}^{N-1}\theta _{s}^{i}/i! =\sum _{ i=0}^{N-1}N^{i}(1 + \frac{1} {\gamma } )^{i}(\log (\gamma +1))^{i}/i! \sim N^{N-1}(\log (\gamma +1))^{N-1}/(N - 1)!\;\). Thus, according to (14), \(P_{f,s} \sim \frac{N^{N-1}} {(N-1)!}(\log (\gamma +1))^{N-1}(\gamma +1)^{-N}\) and

$$\displaystyle{ d_{f,s} = -\lim _{\gamma \rightarrow +\infty }\frac{\log P_{f,s}} {\log \gamma } = N. }$$

Also, with θ s defined above, as γ → +, \(e^{-\theta _{s}/(\gamma +1)} = e^{-\frac{N} {\gamma } \log (\gamma +1)} \rightarrow 1\) and \(\sum _{i=N}^{+\infty }\theta _{s}^{i}/(i!(\gamma +1)^{i}) =\sum _{ i=N}^{+\infty }N^{i}(1+ \frac{1} {\gamma } )^{i}(\log (\gamma +1))^{i}/(i!(\gamma +1)^{i}) \sim N^{N}(\log (\gamma +1))^{N}(\gamma +1)^{-N}/N!\;\). Thus, according to (15), \(P_{md,s} \sim \frac{N^{N}} {N!} (\log (\gamma +1))^{N}(\gamma +1)^{-N}\) and

$$\displaystyle{ d_{md,s} = -\lim _{\gamma \rightarrow +\infty }\frac{\log P_{md,s}} {\log \gamma } = N. }$$

Accordingly, d e, s = min(d f, s , d md, s ) = N.

Appendix 2: Proof of Theorem 3

From (18) and (19),

$$\displaystyle{ P_{f,h} = P(\lambda _{h} \geq \theta _{h}\vert H_{0}) =\sum _{ i=\theta _{h}}^{N}\binom{N}{i}P_{ f,l}^{i}(1 - P_{ f,l})^{N-i}. }$$

The false alarm diversity at the local sensing decision is d f, l , so as γ → +, \(P_{f,l} \sim (\gamma +1)^{-d_{f,l}}\), 1 − P f, l → 1; thus \(P_{f,l}^{i}(1 - P_{f,l})^{N-i} \sim (\gamma +1)^{-id_{f,l}}\). In the summation of P f, h , as γ → +, the term with lowest power order of (γ + 1)−1 will dominate; thus \(P_{f,h} \sim \binom{N}{\theta _{h}}(\gamma +1)^{-\theta _{h}d_{f,l}}\), and the false alarm diversity order is

$$\displaystyle{ d_{f,h} = -\lim _{\gamma \rightarrow +\infty }\frac{\log P_{f,h}} {\log \gamma } =\theta _{h}d_{f,l},\ \ \theta _{h} = 1,2,\ldots,N. }$$

From (18) and (19),

$$\displaystyle{ P_{md,h} = P(\lambda _{h} <\theta _{h}\vert H_{1}) =\sum _{ i=0}^{\theta _{h}-1}\binom{N}{i}(1 - P_{ md,l})^{i}P_{ md,l}^{N-i}. }$$

From the same argument, the missed detection diversity order is

$$\displaystyle{ d_{md,h} = - \lim _{\gamma \rightarrow +\infty } \frac{\log P_{md,h}} {\log \gamma } = (N -\theta _{h} + 1)d_{md,l},\ \theta _{h} = 1,2,\ldots,N. }$$

Appendix 3: Proof of Corollary 3

From Corollary 1, we know that the local threshold can be chosen as θ l = d 0 θ o (d 0 > 0). In this case, d f, l = d 0 and d md, l = 1. By Theorem 3, if the hard decision threshold is θ h (θ h ∈ {1, 2, , N}), the average error diversity is d e, h = min(θ h d 0, Nθ h + 1). To maximize d e, h , we need to maximize both θ h d 0 and (Nθ h + 1) simultaneously. By maximizing the latter, we obtain θ h = 1. Then d e, h = min(d 0, N). Thus, as long as d 0N, we obtain the maximum diversity d e, h = N. However, as stated in Corollary 1, higher d 0 will cause higher SNR loss for the missed detection performance. Thus, we choose d 0 = N to minimize the SNR loss for the missed detection performance while achieving the maximum average error diversity.

Appendix 4: Proof of Theorem 4

If \(\boldsymbol{\mathcal{R}}_{1} =\{ (n_{0},n_{1}): n_{1} \geq \theta _{t}\}\), then:

$$\displaystyle{ \begin{array}{rl} P_{f,t}& = \sum _{ n_{1}=\theta _{t}}^{N}\sum _{n_{0}=0}^{N-n_{1}} \frac{N!} {n_{0}!(N-n_{0}-n_{1})!n_{1}!}\alpha _{1}^{n_{0}}\alpha _{ 2}^{N-n_{0}-n_{1}}\alpha _{ 3}^{n_{1}} \\ & = \sum _{ n_{1}=\theta _{t}}^{N} \frac{N} {n_{1}!(N-n_{1})!}(1 -\alpha _{3})^{N-n_{1}}\alpha _{ 3}^{n_{1}}, \end{array} }$$

and

$$\displaystyle{ \begin{array}{rl} P_{md,t}& = \sum _{ n_{1}=0}^{\theta _{t}-1}\sum _{n_{ 0}=0}^{N-n_{1}} \frac{N!} {n_{0}!(N - n_{0} - n_{1})!n_{1}!}\beta _{1}^{n_{0}}\beta _{ 2}^{N - n_{0} - n_{1}}\beta _{ 3}^{n_{1}} \\ & = \sum _{ n_{1}=0}^{\theta _{t}-1} \frac{N} {n_{1}!(N-n_{1})!}(1 -\beta _{3})^{N-n_{1}}\beta _{ 3}^{n_{1}}. \end{array} }$$

This is equivalent to BT with θ l, B = θ l, 2 and θ f, B = θ t .

If \(\boldsymbol{\mathcal{R}}_{0} =\{ (n_{0},n_{1}): n_{0} \geq N + 1 -\theta _{t}\}\), then:

$$\displaystyle{ \begin{array}{rl} P_{f,t}& = \sum _{ n_{0}=0}^{N - \theta _{t} + 1}\sum _{n_{ 1}=0}^{N - n_{0}} \frac{N!} {n_{0}!(N - n_{0} - n_{1})!n_{1}!}\alpha _{1}^{n_{0}}\alpha _{ 2}^{N-n_{0}-n_{1}}\alpha _{ 3}^{n_{1}} \\ & = \sum _{ n_{0}=0}^{N-\theta _{t}+1} \frac{N} {n_{0}!(N-n_{0})!}\alpha _{1}^{n_{0}}(1 -\alpha _{ 1})^{N-n_{0}}, \end{array} }$$

and

$$\displaystyle{ \begin{array}{rl} P_{md,t}& = \sum _{ n_{0} = N - \theta _{t} + 1}^{N}\sum _{n_{1} = 0}^{N-n_{1}} \frac{N!} {n_{0}!(N - n_{0} - n_{1})!n_{1}!}\beta _{1}^{n_{0}}\beta _{ 2}^{N - n_{0} - n_{1}}\beta _{ 3}^{n_{1}} \\ & = \sum _{ n_{0} = N - \theta _{t} + 1}^{N} \frac{N} {n_{0}!(N-n_{0})!}\beta _{1}^{n_{0}}(1 -\beta _{ 1})^{N-n_{0}}. \end{array} }$$

This is equivalent to BT with θ l, B = θ l, 1 and θ f, B = θ t .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Duan, D., Yang, L., Cui, S. (2017). Cooperative Spectrum Sensing: From Fundamental Limits to Practical Designs. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics