Skip to main content

MEMS Adaptive Optics

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 32 Accesses

Definition

MEMS: Micro-electro-mechanical Systems

MEMS are small silicon-based mechanical devices that employ semiconductor fabrication techniques in their construction. MEMS devices may take various forms: from pressure, chemical, and vibration sensors, to optical switches and mirrors through to inkjet printer heads. MOEMS – Micro-Opto-Electromechanical Systems – are a subset of MEMS devices that in addition employ optical components; an example could be a photon detector mounted on a silicon chip.

Note: MEMS/MOEMS devices have structures that can be measured at the micrometer level, whereas nanotechnology deals with scales at the level of an individual molecule (generally taken to be in the 1–100 nm range).

Adaptive Optics

Adaptive Optics (AO) are optical systems that can both measure and correct optical wavefront aberrations in real time. Real time depends on the particular AO application: in astronomy closed loop bandwidths of several hundred Hertz are required to correct the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy, J.W.: Adaptive Optics for Astronomical Telescopes. Oxford University Press, Oxford (1998)

    Google Scholar 

  2. Tyson, R.K.: Principles of Adaptive Optics, 2nd edn. Academic, Boston (1998)

    Google Scholar 

  3. Porter, J., Queener, H., Lin, J., Thorn, K., Awwal, A.: Adaptive Optics for Vision Science. Wiley, Hoboken (2006)

    Book  Google Scholar 

  4. Doble, N., Miller, D.T., Yoon, G.Y., Williams, D.R.: Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes. Appl. Opt. 46, 4501–4514 (2007)

    Article  Google Scholar 

  5. Vdovin, G.V., Sarro, P.M.: Flexible mirror micromachined in silicon. Appl. Opt. 34, 2968–2972 (1995)

    Article  Google Scholar 

  6. Bifano, T.G., Mali, R.K., Dorton, J.K., Perreault, J.A., Vandelli, M.N., Horenstein, M., Castanon, D.A.: Continuous membrane, surface micromachined, silicon deformable mirror. Opt. Eng. 36, 1354–1360 (1997)

    Article  Google Scholar 

  7. Manzanera, S., Helmbrecht, M.A., Kempf, C.J., Roorda, A.: MEMS segmented-based adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2, 1204–1217 (2011)

    Article  Google Scholar 

  8. Wandell, B.A.: Foundations of Vision, 1st edn. Sinauer Associates, Sunderland (1995)

    Google Scholar 

  9. Rodieck, R.W.: The First Steps in Seeing, 1st edn. Sinauer Associates, Sunderland (1998)

    Google Scholar 

  10. Dreher, A.W., Bille, J.F., Weinreb, R.N.: Active optical depth resolution improvement of the laser tomographic scanner. Appl. Opt. 28, 804 (1989)

    Article  Google Scholar 

  11. Liang, J., Grimm, B., Goelz, S., Bille, J.F.: Objective measurement of the wavefront aberration of the human eye with the use of a Hartmann-Shack wavefront sensor. J. Opt. Soc. Am. A 11, 1949 (1994)

    Article  Google Scholar 

  12. Liang, J., Williams, D.R., Miller, D.T.: Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14, 2884 (1997)

    Article  Google Scholar 

  13. Fernandez, E.J., Iglesias, I., Artal, P.: Closed-loop adaptive optics in the human eye. Opt. Lett. 26, 746 (2001)

    Article  Google Scholar 

  14. Doble, N., Yoon, G., Chen, L., Bierden, P., Singer, B., Olivier, S., Williams, D.R.: The use of a microelectromechanical mirror for adaptive optics in the human eye. Opt. Lett. 27, 17 (2002)

    Article  Google Scholar 

  15. Roorda, A., Romero-Borja, F., Donnelly, W.J., Queener, H., Herbert, T.J., Campbell, M.C.W.: Adaptive optics laser scanning ophthalmoscopy. Opt. Express 10, 405 (2002)

    Article  Google Scholar 

  16. Burns, S.A., Tumbar, R., Elsner, A.E., Ferguson, D., Hammer, D.X.: Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A 24, 1313–1326 (2007)

    Article  Google Scholar 

  17. Burns, S.A.: Personal communication, April (2011)

    Google Scholar 

  18. Werner, J.S.: Personal communication, April (2011)

    Google Scholar 

  19. Zawadzki, R.J., Pilli, S., Kim, D.Y., Werner, J.S., Jones, S.M., Olivier, S.S.: Retinal imaging with a combined adaptive optics/optical coherence tomography and adaptive optics/scanning laser ophthalmoscopy system. Proc. Soc. Photo. Opt. Instrum. Eng. 7550, 75500Z (2010)

    Google Scholar 

  20. Wilson, T.: Confocal Microscopy. Academic, London (1990)

    Google Scholar 

  21. Denk, W., Strickler, J., Webb, W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  Google Scholar 

  22. Albert, O., Sherman, L., Mourou, G., Norris, T.B., Vdovin, G.: Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000)

    Article  Google Scholar 

  23. Booth, M.J., Neil, M.A.A., Juskaitis, R., Wilson, T.: Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U. S. A. 99, 5788–5792 (2002)

    Article  Google Scholar 

  24. Booth, M.J.: Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express 14, 1339–1352 (2006)

    Article  Google Scholar 

  25. Debarre, D., Botcherby, E.J., Booth, M.J., Wilson, T.: Adaptive optics for structured illumination microscopy. Opt. Express 16, 9290–9305 (2008)

    Article  Google Scholar 

  26. Potsaid, B., Bellouard, Y., Wen, J.T.: Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging. Opt. Express 13, 6504–6518 (2005)

    Article  Google Scholar 

  27. Macintosh, B.A., Graham, J.R., Palmer, D.W., Doyon, R., Dunn, J., Gavel, D.T., Larkin, J.: The gemini planet imager: from science to design to construction. Proc. Soc. Photo. Opt. Instrum. Eng. 7015, 701518 (2008)

    Google Scholar 

  28. Fusco, T., Petit, C., Rousset, G., Sauvage, J.-F., Dohlen, K., Mouillet, D., Charton, J.: Design of the extreme AO system for SPHERE, the planet finder instrument of the VLT. Proc. Soc. Photo. Opt. Instrum. Eng. 6272, 62720K (2006)

    Google Scholar 

  29. Weyrauch, T., Vorontsov, M.A.: Free-space laser communications with adaptive optics: atmospheric compensation experiments. Opt. Fiber Commun. Rep. 1, 247–271 (2008). Springer, New York

    Google Scholar 

  30. Ota, T., Sugiura, T., Kawata, S., Booth, M.J., Neil, M.A.A., Juskaitis, R., Wilson, T.: Enhancement of laser trapping force by spherical aberration correction using a deformable mirror. Jpn. J. Appl. Phys. 42, L701–L703 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Drs. John S. Werner, Robert Zawadski (UC Davis), and Stephen Burns (Indiana University) for their support. Figure permission from Iris AO Inc., Boston Micromachines Corp, OKO Technologies, and Thorlabs is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Doble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Doble, N. (2016). MEMS Adaptive Optics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_298

Download citation

Publish with us

Policies and ethics