Skip to main content

AC Electrokinetics of Nanoparticles

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 101 Accesses

Synonyms

AC electrokinetics of colloidal particles; AC electrokinetics of sub-micrometer particles

Definition

AC electrokinetics is the name given to a group of techniques that utilize alternating (AC) electric fields to move dielectric particles in suspension. AC electrokinetics of nanoparticles refers to methods of exerting electrical force and/or torque on particles of nanometer dimensions, examples of which are viruses, macromolecules, and colloidal particles.

Introduction

Dielectrics do not bear a net charge but rather polarize when subjected to electric fields. When dielectric particles in suspension are subjected to electric fields, polarization results in charge accumulation at the particle/electrolyte interface. Electrode polarization may also occur, giving rise to the buildup of a double layer of ions and counterions at the electrode/electrolyte interface. Particle polarization is represented by effective dipole and higher-order moments. AC electrokinetic forces and torques...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Konski, C.T.: Electric properties of macromolecules V: theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605–619 (1960)

    Article  Google Scholar 

  2. Nili, H., Sun, T., Green, N.G.: Higher-order dielectrophoretic force characterisation of non-spherical particles. J. Phys. Conf. Ser. 301, 012061 (2011)

    Article  Google Scholar 

  3. Nili, H., Green, N.G.: Higher-order dielectrophoresis of nonspherical particles. Phys. Rev. E 89, 063302 (2014)

    Article  Google Scholar 

  4. Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  5. Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1951)

    Article  Google Scholar 

  6. Green, N.G.: Dielectrophoresis of Sub-micrometre particles. Thesis, University of Glasgow, Glasgow. (1998)

    Google Scholar 

  7. Pethig, R.: Review article – dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)

    Article  Google Scholar 

  8. Krupke, R., Hennrich, F., von Lohneysen, H., Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)

    Article  Google Scholar 

  9. Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 238, 1082–1086 (2001)

    Article  Google Scholar 

  10. Morgan, H., Holmes, D., Green, N.G.: 3D focusing of nanoparticles in microfluidic channels. IEE Proc. Nanobiotechnol 150, 76–81 (2003)

    Article  Google Scholar 

  11. Morgan, H., Green, N.G.: AC Electrokinetics of Colloids and Nanoparticles. Research Studies Press, Baldock, Herts, UK (2003)

    Google Scholar 

  12. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  13. Arnold, W.M., Zimmermann, U.: Electro-rotation– development of a technique for dielectric measurements on individual cells and particles. J. Electrost. 21, 151–191 (1988)

    Google Scholar 

  14. Washizu, M., Shikida, M., Aizawa, S., Hotani, H.: Orientation and transformation of flagella in electrostatic field. IEEE Trans. IAS 28, 1194–1202 (1992)

    Google Scholar 

  15. Arcenegui, J.J., Garcia-Sanchez, P., Morgan, H., Ramos, A.: Electro-orientation and electrorotation of metal nanowires. Phys. Rev. E 88, 063018 (2013)

    Article  Google Scholar 

  16. Hughes, M.P.: AC electrokinetics: applications for nanotechnology. Nanotechnology 11, 124–132 (2000)

    Article  Google Scholar 

  17. Masuda, S., Washizu, M., Iwadare, M.: Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Trans. Ind. Appl. 23, 474–480 (1987)

    Google Scholar 

  18. Hagedorn, R., Fuhr, G., Muller, T., Schnelle, T., Schnakenberg, U., Wagner, B.: Design of asynchronous dielectric micromotors. J. Electrost. 33, 159–185 (1994)

    Article  Google Scholar 

  19. Li, W.H., Du, H., Chen, D.F., Shu, C.: Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation. Comp. Mater. Sci. 30, 320–325 (2004)

    Article  Google Scholar 

  20. Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217, 420–422 (1999)

    Article  Google Scholar 

  21. Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D. Appl. Phys. 31, 2338–2353 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nili, H., Green, N.G. (2016). AC Electrokinetics of Nanoparticles. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_130

Download citation

Publish with us

Policies and ethics